
Australian Government 
Department of Defence 

Defence Science and 
Technology Organisation 

_ji 
Modelling Intention Recognition 
for Intelligent Agent Systems 

Clint Heinze 

m 

■•; J DSTO-RR-0286 

M 
DISTRIBUTION STATEMENT A 

Approved for Public Release 
Distribution Unlimited 



Australian Government 

Department of Defence 
Defence Science and 

Technology Organisation 

Modelling Intention Recognition for Intelligent 
Agent Systems 

Clint Heinze 

Air Operations Division 
Systems Sciences Laboratory 

DSTO-RR-0286 

ABSTRACT 

Mainstream visual psychology presents a 'sense then infer' account of vision 
that is analogous to the 'sense then infer' processing that characterises the 
agent intention recognition literature. From ecological psychology comes Gib- 
son's theory of visual perception that highlights the importance of the envi- 
ronment in explaining the nature of vision and recognition and claims that 
higher order structures are directly accessible. This theory can be used as the 
stepping-off point for an account of intention recognition and the means by 
which it might be modelled. Furthermore, the capacity for virtual environ- 
ments to be designed 'agent friendly' provides yet another dimension of design 
freedom. When accompanied by an explicit model of perception the intention 
recognition problem can be cast as a software design problem. The resulting 
design patterns provide useful options for modelling intention recognition in 
intelligent agent systems. 
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Modelling Intention Recognition for Intelligent Agent 
Systems 

EXECUTIVE SUMMARY 

This report is an almost verbatim copy of Clint Heinze's PhD thesis of the same title 
conducted at the Intelligent Agent Lab at the University of Melbourne. This thesis was 
supported by DSTO from August 1997 - August 2003 under the Air Operations Research 
Branch's Long Range research task (currently LRR 03/226) and was supervised by Dr. 
Simon Goss. Some trivial typographic and layout changes have been made to support 
DSTO formatting requirements. It is published here to provide easier access throughout 

DSTO. 

When constructing military simulations that require sophisticated cognitive models 
there are plenty of challenges to occupy the developer. Human factors experts, particu- 
larly cognitivists, endeavour to gain an understanding of actual human psychology behind 
the behaviours to be modelled; computer scientists attempt to develop computational 
technologies with the attributes necessary to model those cognitive functions. Ultimately 
engineers must draw these models and technologies together in a manner that results in 
simulation systems that meet the expressed requirements. In the world of military sim- 
ulation requirements vary substantively. High fidelity, whilst seemingly always desirable 
often conflicts with performance, maintainability, complexity, and other attributes that 
combine to make the software less useful. Balancing these requirements is aided by the 
availability of several architectures that allow the engineer the freedom to tradeoff various 

attributes of the system. 

This thesis presents a series of design patterns that provides software architectures 
useful for implementing intention recognition. Each of these architectures has a basis 
(although sometimes this tenuous) in psychology and cognitive modelling, and each im- 
poses requirements on the technology necessary for implementation. The relative merits 
of the patterns are presented as are fully worked examples of their application to flight 

simulation. 
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Chapter 1 

Introduction 

"His plans are calm, and deeply hidden, so no one can figure them out.  He changes        ; 
his actions and revises his plans, so that people will not recognize them. He changes 
his abode and goes by a circuitous route so people cannot anticipate him: When people 
never understand what your intention is, then you win."—Sun Tzu [174] 

The quotation above comes from the Chinese philosopher and writer, Sun Tzu. Though 
written around 500BC, the Art of War is still highly regarded for the insights it offers into 
military strategy. Two and a half thousand years later intention recognition is still a vital 
aspect of military decision-making: when intention recognition is successful the element of 
surprise is removed and the enemy successfully anticipated1; when intention recognition 
fails the results are often catastrophic2. 

Although significant in military contexts, everyday life is full of examples of the impor- 
tance of intention recognition. Predicting and anticipating the behaviour of others eases 
interactions and improves cooperation and coordination. The simplest explanation for 
the need for intention recognition lies in an inability or unwillingness to communicate. If 
someone is both willing and able to communicate fully and honestly about their current 
and future actions then there is little need for intention recognition. If communication 
is unavailable, unreliable, expensive, impractical, or, as is the case with combative or 
competitive environments, undesirable, then a mechanism for interpreting and predicting 
the behaviour of others is required. Intention recognition goes to the very heart of the 
ability to display intelligent behaviour in environments where communication is impaired 

or impractical. 

The original motivation for this thesis stemmed from exactly the point where Sun 
Tzu's statement about the importance of understanding intent intersects with virtual en- 
vironments and intelligent agents—military simulation. In virtual environments intention 

1 And clearly the reverse is also true. By manipulating and deceiving the opponent with false indications 
of intent military victory can be assisted. Operation Bagration was an attack by 166 divisions of the Red 
Army through Belorussia and into Minsk. In perhaps the greatest defeat of the Germans during the 
second world war the Soviets successfully employed strategic level deception and convinced the German 
High Command that attacks should be expected elsewhere. The result was an unprepared and under- 
equipped German force taken almost completely by surprise. 

2In 1988 the American warship, USS Vincennes misidentified and misinterpreted the actions of an 
Iranian Airbus carrying 290 civilian passengers. The result was an order to shoot and a tragic loss of 
human life. 
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recognition is as important as it is in the real world. Proliferating heterogeneous computer 
systems, networks, and agents that speak different languages with different purposes and 
designs require substitutes for communication. Intention recognition is a viable, logical, 
and natural alternative3. 

The wider information technology (IT) community has a clearly expressed need for 
models of intention recognition. Games, digital assistants, wizards, e-business intermedi- 
aries and broking agents could all benefit from models of intention recognition. 

"As connected devices proliferate, you'll want software agents to help coordinate them 
all. Software agent developers hope to have agents evolve from mere facilitators into 
actual decision makers. But don't expect to have truly smart agents that anticipate 
your needs and negotiate on your behalf—at least not in the next, five years."—J. 
Clyman The 5 Developments to watch in the next century. PC Magazine. August, 
2000 

Interactive systems might apply models of intention recognition to enable computers 
to better assist the human user. Used in this way intention recognition can bridge the 
communication gap that exists between the human and the computer and provide a means 
by which the computer obtains predictive insights into the expected future behaviour of 
the user, preempting their requests with timely provision of information and services. 

Because this thesis explores issues related to intelligent agents and the development of 
systems that include them, before embarking upon a summary of the thesis a definition 
of 'agent' is presented: 

an agent is an autonomous entity situated in an environment that it 
can perceive, and in which it can act. 

Whether or not this is a useful definition of agency is explored in later sections but it 
is an acceptable starting point for the thesis4. Providing the definition immediately begs 
questions about the meaning of words like 'autonomous', 'situated', and 'environment'. 
Leaving aside the detail, it constitutes a reasonable working definition with which to 
commence the elaboration of the content of the thesis and a discussion of the significance 
of these terms is delayed for later chapters. 

Implicit in the definition above is the widely held view that abstraction is an impor- 
tant property of agency. By developing software based on more abstract concepts than 
those available in object oriented programming5 or procedural programming6 previously 
intractable software developments are made tractable. Abstract concepts that have proved 
useful in agency are those that match human behaviours: such as perception and action. 

Intention recognition is only a substitute for communication as it pertains to coordinated activity. 
There are many other subjects of communication that are not subsumed by intention recognition 

4This definition is broad enough to include both those agent architectures that are decomposed by 
function and those that are decomposed by activity [13]. Though Brooks' proposals for non-representational 
intelligence results in robots that display intelligent behaviour it is not clear that modelling and designing 
high-level behaviours like intention recognition is possible in such a framework. 

Where classes, objects, methods, data, and messages are the useful concepts. 
Where functions, subroutines, parameters and modules are the useful concepts. 
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The approach adopted throughout this thesis is predicated on the assumption that the 
word 'perceive' in the above definition is significant. The thesis presents insights into the 
design of agent systems related to the concept of perception. Though a recurring theme in 
definitions of agency, few theories, architectures or languages provide useful descriptions 
of perception. Most agent researchers seem to agree that perception is a worthy concept 
but few seem to take the step of explicitly including it into their theories, methodologies 
or languages. The situated nature of agents suggests certain models of perception—those 
from ecological psychology and the situated cognition literature [57, 30]. 

A simple definition of perception is presented here, broad enough to encompass at least 
some aspects of intention recognition: 

perception is the process by which an agent becomes aware of events 
and structures in the environment 

Incorporating an explicit model of perception into the design process allows for a 
more reasoned approach to the development of agent systems, particularly those aspects 
related to interactions between the agent and its environment. Simply put, the design 
issue for agent systems becomes a question of what events and structures should be in the 
environment, and how the agent becomes aware of them. Mainstream theories of human 
vision posit that perception is a two-stage process: first the environment is sensed; then 
the sense-data is abstracted or otherwise processed into inferred higher order structures. 
This 'sense-and-infer' process assembles more abstract concepts from the raw material of 
sensation by an internal inferencing process. 

More radical theories of visual perception propose that abstract structures are in the 
environment and are directly accessed by perception. Pattern matching techniques might 
search for and discriminate the patterns in the environment that are the indicators of 
higher order structures. Furthermore, in virtual worlds the environment can be designed. 
If the structures are there, hidden just below the surface but accessible and waiting to 
be perceived, then they can be made explicit by something akin to a labelling process. 
This transforms the task of perception from complex pattern matching into the relatively 
trivial task of label reading, or sensing as it will be referred to for the remainder of this 

thesis. 

The following definition: 

intention recognition is the process by which an agent becomes aware 
of the intent of others 

draws a deliberately strong comparison with the previous definition of perception. 
Perception involves the production of abstract representations of the environment from 
the rich array of perceptual input. Intention recognition is the most abstract form of 
perception-based human behaviour. Not only does it suggest model of other mind, but 
it is predictive, requiring representation of future states. Intentions of other agents cause 
patterns of events and structures in the environment and if these are perceived then the 
result of that perception is intention recognition. 
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Dennett argues convincingly that intention ascription is the means by which folk- 
psychological understanding and prediction of complex behaviour is achieved [39]. A recent 
paper by Isla and Blumberg argues for the application of Dennett's Intentional Stance to 
the development of artificial intelligence but leaves unanswered questions addressed by 
this thesis. 

"[...] one of the important aspects of the intentional stance (Dennett's take on theory of 
mind) is that it can occasionally be applied fruitfully to objects that we know do not have 
minds of their own—the point being that as long as the attribution of intentionality is 
useful in predicting the objects behaviour, then it is as good a model as any. Initially, 
we. expect it will be convenient to tag explicitly objects in the world for which a theory 
of mind should be assumed. However, it would be interesting in the long-run to see 
whether a character can learn which types of objects can be so treated. "—Isla and 
Blumberg [81] 

Current intelligent agent implementations of intention recognition adopt a 'sense then 
infer' approach analogous to mainstream theories of human perception [15]. Consequently 
these implementations are focused on the addition of inferencing, deductive reasoning, 
hypothesis generation or other, similar functionality to agents. These implementations 
provide intention recognition at the expense of modelling difficulties in other areas of the 
agent system, often significantly increasing design complexity. Furthermore, these imple- 
mentations typically provide useful, sophisticated and interesting approaches for dealing 
with the inference component of sense and infer but have less to say about the manner in 
which the environment is sensed. 

Developers of agent systems often fail to consider the situated nature of agents and 
the corresponding design interplay between the environment and the agent. Neglect of the 
environment, is sometimes due to system constraints that place the environment beyond the 
design scope, but sometimes to a tendency for agent developers to disregard or undervalue 
those areas of the system that are 'non-agent' and to design their agents in isolation, or 
in idealised or simplified environments. In virtual worlds (or even in real-worlds where 
there is some design flexibility) the agent-environment interaction can explore a design 
space that provides for varied approaches to modelling intention recognition. Facilitating 
this exploration is a modelling and methodological task that is informed by the lessons 
of software engineering and the scientific research underpinning the philosophical and 
psychological literature relating to perception and recognition. 

1.1    Aim and Scope 

The aim of this research is to provide the designer of agent systems with a practical 
approach to modelling intention recognition for a range of intelligent agent systems. This 
can be decomposed into two related aims: to provide an approach to modelling intention 
recognition for intelligent agent systems; and to demonstrate that when undertaking the 
design of intelligent agent systems this modelling approach offers software engineering 
advantages. 
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To achieve the stated aim the research leverages on the experiences of mainstream 
software engineering in dealing with modelling and design issues—specifically the devel- 
opment and use of software design patterns. By adopting a software engineering approach 
this thesis does not advocate a particular agent architecture in which intention recog- 
nition might be modelled, nor is it limited to one particular technology that is suitable 
for recognising intent, or a logical account of a particular theory of intention recognition 
(though examples of each of these is provided). Instead, an approach to modelling agent 
systems is presented that allows for the intention recognition design space to be explored 
in the light of system requirements. This exploration results in a set of six architectural 
design patterns that provide the basis for modelling intention recognition in substantially 
different ways. These design patterns provide the software engineer with a tool-box of 
options to meet the varying requirements of systems that will be encountered in practice. 
To demonstrate the utility of these design patterns an intelligent agent system (the Virtual 
Air Show) is described that draws out the differences between the patterns and allows a 
critical evaluation of their strengths and weaknesses. 

By considering agent systems (as opposed to agents in isolation) this research specifi- 
cally includes the environment into which the agent will be placed as an important consid- 
eration in the design process. Design options result from allowing flexibility in the location 
of information and processing within the agent system and these are reflected in the de- 
veloped patterns. In some cases this approach moves functionality that might normally be 
regarded as perception from the agent into the environment, and some of the processing 
that might normally be regarded as cognitive reasoning into perception. Objections to 
this will abound. Chalmers et. al. [26] caution AI researchers against drawing strong dis- 
tinctions between cognition and reasoning. Brooks and others [13] offer similar criticisms 
about ignoring the interfaces between AI software and the environment/A critical assess- 
ment of the chosen modelling approach examines some philosophical and psychological 
implications in addition to the pragmatic realities of an engineering evaluation. 

In seeking inspiration for these patterns the agent literature, the psychology literature 
and the software engineering literature are consulted. This thesis draws on the psychology 
literature for design inspiration but software engineering utility is ultimately a stronger 
driver than the psychological credibility of an adopted model. 

The complexities resulting from the social interactions of multi-agent systems are 
specifically excluded from the scope of this thesis. In Chapter 8 the issue is discussed 
briefly with respect to possible extensions of this research. 

It is a fundamental assumption of this thesis that the agents under consideration ma- 
nipulate abstract, knowledge level data [125]. This assumption is one commonly associated 
with agents in general, intelligent agents in particular, and is unavoidable when consid- 
ering agents that must exhibit high-level human behaviours like intention recognition. A 
related assumption is that the agent is situated in a complex environment where data from 
many sources (agents and non-agents) must be processed. 

Casting intention recognition in intelligent agent systems as a modelling and design 
activity provides a solid software engineering basis for use in industry, practical insights 
for the application of technology, and, as Herb Simon writes: 

"What is there to study besides the boundary sciences—those that govern the means 
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and the task environment? The artificial world is centered precisely on this interface 
between the inner and outer environments; it is concerned with attaining goals by 
adapting the former to the latter. The proper study of those who are concerned with 
the artificial is the way in which that adaptation of means to environments is bought 
about—and central to that is the process of design itself. "—Herb Simon [161] 

1.2    Thesis Contribution 

There are two primary contributions of this thesis that correspond to the two con- 
stituent parts of the stated aim: 

• a set of six design patterns to support the designer of intelligent agent systems that 
require an intention recognition capability. These patterns are presented in the style 
of the mainstream software engineering literature [18] but are appropriately inspired 
by a consideration of the psychology literature; and 

• a description of an implemented system that illustrates the application and utility 
of these design patterns and provides the basis for a critical appraisal. 

There are two secondary contributions that were a by-product of the particular method- 
ology adopted. In seeking inspiration for the design patterns the agents literature, software 
engineering literature and the psychology literature were examined. This gave rise to: 

• an account of the importance of perception in modelling agent systems. In particular, 
the importance of an explicit model of perception as the means by which structures 
or concepts in the agent's environment are converted into representations that are 
appropriate for the agent; and 

• a description of the manner in which ontologies assist intelligent agent system design 
and the relationship between perception and ontologies. Influenced by the developed 
model of perception an account of ontologies is presented that describes a means 
of integrating agent ontology design into mainstream software engineering. The 
ontology is seen as a product of the design or, if it is preexisting then a constraint 
over the design. 

Finally there are implications for the general application of the approach described in 
this thesis into other related areas of agent design and of agent behavioural modelling. 
The wider applicability of this research and the future directions that it might take are 
discussed in Chapter 8. 

1.3    Historical Influences 

This thesis was motivated by specific requirements from the domain of military simula- 
tion set in the context of a more general, and ultimately more difficult, goal of advancing 
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the field of agent system design.   This section, and the next, introduces some of these 
motivating factors which set the context for the thesis. 

This thesis was originally conceived in the Defence Science and Technology Organisa- 
tion (DSTO)7 to meet a need to provide intelligent agents used as human surrogates in 
military simulations [76, 78, 74] with a capacity for intention recognition. This thesis is 
part of a larger ongoing research program and the need for intention recognition is just 
one of many in a long 'shopping-list' of agent functionality that the military simulation 

community requires [140]. 

Current generation simulators do not yet exhibit an intention recognition capacity 
but a number of prototypes and technology demonstrators have broken new ground and 
made significant advances. The addition of intention recognition to agent based military 
simulations promises to greatly enhance their utility in exploring issues associated with 
command and control and tactical decision-making and to generally improve the fidelity 
of computer generated forces in human-in-the-loop training simulators [115]. 

Intention recognition was identified by Rao and Murray8 as one of the significant 
impediments to higher fidelity modelling of human decision-making in military simulation. 

"The tasks performed by a combat pilot can be broadly divided into two areas—situation 
awareness and tactics selection. Situation awareness is defined as the knowledge, un- 
derstanding, cognition, and anticipation of events, factors, variables affecting the safe, 
expedient and effective conduct of an air mission. ... In obtaining situation awareness, 
a pilot must infer the beliefs, desires, and intentions of other pilots from the behaviour 
of their aircraft. "—Rao and Murray [151] 

Their initial insights led to further work in developing a theoretical basis for modelling 
intention recognition [147]. This was taken by Busetta and Tidhar and operationalised, 
in the form of a technology demonstrator [19]9. Initial experiences with the technology, 
though positive, revealed a number of unresolved challenges. It was clear that traditional 
approaches to intention recognition, though often elegant in their theoretical formulation 
place limitations, constraints, or burdens on other areas of the agent design. In an envi- 
ronment where performance is critical, continuous pressure for the computationally light 
solutions dictates that approaches like those of Rao and Murray are not always preferred. 

Beyond the task of providing approaches for modelling intention recognition in intel- 
ligent agent systems there are secondary motivations from the domain of military sim- 
ulation that have pushed, pulled, and otherwise directed this thesis. This brings to- 
gether some of the strands of a decade of research related to agent-based military simula- 
tion [74, 169, 114, 170, 78, 76], agent oriented software engineering [70, 73, 136, 77, 75], 
and cognitive modelling [71, 72, 126]. 

DSTO uses agent based simulation to answer questions that are impractical to answer 
otherwise. Military systems are associated with long development schedules: often many 

7The DSTO provides science and engineering advice to the Australian Defence Force. 
8The work of Rao and Murray and the subsequent research by Busetta and Tidhar was undertaken 

with the support of DSTO. 
9Further details are included in Section 2.3 
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years will separate the decision to purchase a piece of equipment with the date it will 
enter service. Simulation provides the only realistic option for evaluating systems during 
that interim period. Even if the actual hardware has been acquired and is available for 
experimentation it is also true that military systems are notorious for their high costs and 
the potential hazards associated with their operation. Simulation provides a cost-effective 
means of experimenting with the hardware in a safe environment. 

There is a natural demarcation in military simulation between the models of physical 
systems (military hardware, aircraft, ships, radars) and models of the personnel who 
operate them (pilots, soldiers, seamen, commanders). The former are well understood, 
relatively simple to model and are usually simulated with standard software approaches. 
The human component is problematic. Decision-making is difficult to model, is influenced 
by a large number of variables and colored by emotions, experience, memory and other 
human factors. Agent-based models can provide solutions to at least some of these models. 
DSTO is actively investigating areas such as command and control, cognitive systems 
engineering, and the theories of naturalistic decision making to improve the computational 
modelling of military personnel. The broader research program will bring this diverse 
research (including this thesis) together with the ultimate goal being a unified model of 
human cognition in the style of Newell [124] but with equal weight given to issues of 
software engineering, social and organisational modelling, and knowledge engineering. 

Advice provided by DSTO may impact on multi-billion dollar defence acquisitions and 
on the safe conduct of operations. Robust, reliable, high performance, well validated and 
maintainable software is essential and is sometimes at odds with the need for flexible, high 
fidelity models of human decision-making. With a substantial research and development 
investment in intelligent agent technologies and a significant percentage of total code de- 
veloped being agent oriented DSTO has a vested interest in the future of relevant software 
engineering methodologies. 

This thesis arose from a domain where the need to provide models of intention recogni- 
tion for intelligent agents in simulation environments was influenced by: the high priority 
of software engineering; the performance dictates of real-time and faster than real-time 
simulation; the need for a range of solutions; the importance of validation and verification: 
and the development of a cognitive model. 

1.4    Agent System Design Influences 

This thesis does not aim to explore agent system design in general but the results of 
this thesis may inform a broader research community than that suggested by the specific 
title. A motivating driver for this research was the continued investigation of methods, 
techniques, and tools that can support the broad spectrum of agent software design activ- 
ities. Within the broad spectrum of software engineering activities classifiable as 'design' 
there are four that are related to this thesis. 

Agent Interface Design Most software bugs occur at module interfaces [178]. This is 
particularly true of agent systems where interfaces translate data from the standard 
software that is typical of agent environments into the novel languages, higher levels 
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of abstraction, and ontologies that are typical of agents [188]. Insights into method- 
ologies for designing the interfaces between agents and environments are available by 
explicitly modelling perception [77]. The literature suggests that interfacing agents 
with environments is problematic. The interfaces are constrained by many factors: 
the nature of the environment, ontologies, requirements on the agent behaviour and 
other system requirements. These conflicting requirements demand an holistic view. 
An agent-centric view simply exacerbates the problem: 

"When a researcher working on a particular module gets to choose both the inputs 
and the outputs that specify the module requirements I believe there is little chance 
the work they do will fit into a complete intelligent system"—-Rodney Brooks [13] 

Designing Agent Friendly Environments Agents, though autonomous and modular, 
must be designed within the constraints of the environments in which they are sit- 
uated. In domains where the environment is within the design scope there is an 
interplay between the design of the agent and the design of the environment. Design- 
ing environments so that they are agent friendly is an important agent engineering 
issue that is informed by a consideration of agent perception [135]. Awareness of the 
importance of the environment in shaping the design of agents has been recognised 
by some researchers. 

"Without an environment, an agent is effectively useless. Cut off from the rest 
of Us world, the agent can neither sense nor act. An environment provides the 
conditions under which an entity (agent or object) can exist. It defines the prop- 
erties of the world in which an agent will function. Designing effective agents 
requires careful consideration of both the physical and communicational aspects of 

their environment."—James Odell et. äl.   [133] 

Environments that agents are placed into are often legacy systems lacking the nec- 
essary features. Strategies for overcoming the limitations of these environments are 
required for allowing the proliferation of agents into real-world settings. 

Utilising Ontologies for Agent Design Agents are typically 'knowledge-level' entities. 
Certainly those that will exhibit abstract reasoning like intention recognition qual- 
ify. The growth of interest in ontologies promises to provide guidance for structuring 
and sharing agent knowledge. Research into agent ontologies is split into two broad 
camps. The global, sharable ontology community and the lightweight ontologies 
community. In both cases there are requirements to design use and reuse ontolo- 
gies [63, 193, 65, 180]. Furthermore it is desirable to incorporate the design and 
development of ontologies into the software engineering process either as constraints 
(in the case of a predefined reused ontology) or as a set of requirements (in the case 
of an ontology to be developed). 

"/•••/ the success of these efforts depends on the development of an engineer- 
ing discipline for ontology design, akin to software engineering for conventional 
software."—Gruber [63] 
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Developing Design Patterns for Agents Patterns provide powerful examples of en- 
capsulated experience that allows software engineers to reuse the successfully ap- 
plied designs from previous developments. A set of appropriate modelling choices 
and design patterns that characterise the spectrum of possible intention recognition 
approaches will guide the development of future intelligent agent systems. 

"Developers of AI software are normally faced with design challenges invoking 
robustness, efficiency, and extensibility. Most of these challenges at a higher level 
are independent of the application-specific requirem.ents. Although design patterns 
have been successfully adopted to tackle these issues, they are rarely documented. 
Consequently this knowledge remains hidden in the minds of developers or buried 
within complex system source code."—Kostiadis et. al.   [100] 

These aspects of design have three things in common: they been identified in the 
literature as deficiencies in the state of the practice of intelligent agent development; 
they are integral to an engineering approach to modelling intention recognition; and they 
are issues that are being addressed currently by those researchers concerned with agent 
oriented software engineering. It seems clear that agent oriented software engineering 
techniques will increasingly become important tools for the software engineer. 

"It is already a good bet that the software engineering of tomorrow will be 'agent 
oriented'just as that of today is beginning to be object oriented"—Jacques Ferber [48] 

Many agent oriented analysis and design methodologies have been suggested [17, 185, 
182, 29, 97] and the breadth of research in this area has resulted in the emergence of many 
agent-related concepts that are useful for analysis and design. It is desirable to distill 
the important concepts to gain insights into more general agent development methodolo- 
gies [89]. 

This thesis will not attempt to develop any general methodological approach but wall, 
through example, detail some techniques and models that might be components of a more 
general approach to agent systems development. In adopting an agent oriented design 
approach to modelling intention recognition this thesis hopes to meet, the challenge set by 
Nick Jennings: 

"Agent-oriented techniques represent an exciting new means of analysing, designing 
and building complex software systems. They have the potential to significantly improve 
current practice in software engineering and to extend the range of applications that 
can feasibly be tackled. Yet, to date, there have been few serious attempts to cast agent 
systems as a software engineering paradigm."—Nick Jennings  [84] 

If agent oriented software engineering is to become a powerful, widely adopted, main- 
stream methodology then a process of unification, standardisation, and industrialisation 
must occur10. The disparate nature of agent research and technology means that unifying 

10These processes are those that have been used to characterise the development of the UML and object 
oriented software engineering [130] 

10 
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agent oriented software engineering might be problematic. The maturity of object oriented 
analysis and design and related tools, languages, and methodologies will be an important 
influence over a future unified view of agent oriented software engineering [89]. With this 
in mind the unified modelling language (UML) is adopted and extended here as a notation 
for describing and documenting the presented design [73, 136]. 

1.5    Structure of Thesis 

This thesis is divided into four parts. Part introduces and summarises the thesis 
by articulating the aim and scope and the contributions of the thesis then providing an 
historical background to situate the thesis in a broader context. Chapter 2 then discusses 
in more detail the related literature and relevant theoretical and practical approaches that 
provide the necessary background. 

Part 2.8 directly addresses the first part of the aim of the thesis "to provide an ap- 
proach to modelling intention recognition for intelligent agent systems". Together the 
four chapters of Part 2.8 provide the methodological part of the thesis resulting in a set of 
design patterns for modelling intention recognition in intelligent agent systems. Chapter 3 
examines three ways in which perception influences models of intention recognition. In 
order to set a modelling framework in which to explain existing approaches and to provide 
the basis for further development an explicit model of perception is presented. Secondly 
Gibson's theory of direct visual perception is extended to explain intention recognition 
in humans. Gibson's original theory and its extension into intention recognition provides 
important insights for modelling intention recognition in intelligent agent systems. Fi- 
nally, the importance of the environment in conditioning the design of agent perception is 
examined and a framework for modelling intention recognition in intelligent agent systems 
is developed. A byproduct of the adoption of an explicit model of perception is the elab- 
oration at design time of the knowledge level concepts that are important to the agent. 
This establishes a strong link with existing research into ontologies. Chapter 4 completes 
the background theory necessary for developing the models of intention recognition by 
investigating the roles that ontologies can play in designing agent systems. Chapter 5 
applies the lessons from Chapters 3 and 4 to develop a set of architectural designs that 
provide alternatives for modelling intention recognition. These designs are elaborated and 
presented in the style of the mainstream software design patterns literature in Chapter 6. 

Part 6.3 addresses the second part of the aim of the thesis "to demonstrate that when 
undertaking the design of intelligent agent systems this modelling approach offers software 
engineering advantages". The systems described apply the design patterns that were the 
principal result of Chapter 6 to the design of six variants of an intelligent agent system. 
The developed system, a flight simulator with an intelligent agent acting as a flight-training 
instructor is sophisticated enough to provide an indication of the strengths and weaknesses 
of each of the design patterns. A single example (the most technologically challenging) is 
described in detail and is taken to implementation in Section 7.3. 

Part 7.3.4.3 summarises and discusses the implications of this research and provides 
pointers to the possible extension and reapplication of this work. 

The four identified contributions of this thesis correspond to the primary chapters: 

11 
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Chapter 3 An account of the importance of perception in modelling agent systems. In 
particular, the importance of an explicit model of perception as the means by which 
structures or concepts in the agent's environment are converted into representations 
that are appropriate for the agent. 

Chapter 4 A description of the manner in which ontologies assist intelligent agent system 
design and the relationship between perception and ontologies. Influenced by the 
developed model of perception an account of ontologies is presented that describes 
a means of integrating agent ontology design into mainstream software engineering. 
The ontology is seen as a product of the design or, if it is preexisting then a constraint 
over the design. 

Chapter 5 and 6 A set of six design patterns to support the designer of intelligent agent 
systems that require an intention recognition capability. These patterns are presented 
in the style of the mainstream software engineering literature [18] but are appropri- 
ately inspired by a consideration of the psychology literature. 

Chapter 7 A description of an implemented system that illustrates the application and 
utility of these design patterns and provides the basis for a critical appraisal. 

12 
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Chapter 2 

Background 

"A large part of appearing intelligent is not only the ability to be predictable (in the 
sense of Dennett's intentional stance) but also the ability to form, predictions, and to 
act in anticipation of those events predicted."—Isla and Blumberg [81] 

"We 'd been caring for the AI, weaning it. Then Donald warned us that the system 
started to display more than consciousness. It started to display intention."—X-Files 
The Kill Switch Episode 

This Chapter provides details of the literature, technology, and associated develop- 
ments that inform, motivate and otherwise guide this research. Often the importance lies 
in emerging trends in particular fields or in the relationships between subject areas. It 
provides the background knowledge that sheds light on why certain approaches were taken 
and justification for the models that are presented. Links back to this chapter are supplied 
throughout Parts 2.8 and 6.3 so the reader might choose to skip this Chapter, referring 
back to it only when necessary. A summary of this Chapter (Section 2.8) provides a set of 
statements interpretable as requirements, constraints and assumptions against which the 
results of thesis is evaluated in Part 7.3.4.3. 

Section 2.1 presents a brief history of agents and develops a consensus based definition 
of agency that sets the scene for the remainder of the thesis. As definitions change 
over time there are emerging trends that point toward relevant areas of research. 

Section 2.2 provides an account of the relevant literature that deals with intention and its 
impact on the development of agent systems. In keeping with Section 2.1 intentions 
are presented as an ascribed property of a system or as part of the description of a 
system. 

Section 2.3 builds on Section 2.2 by adding a survey of the intention recognition litera- 
ture. Specific examples from the literature are critically assessed and a stereotypical 
case study presented. 

Section 2.4 One of the emerging trends in agent research is the situated nature of agents 
and the corresponding importance of environments. The situated cognition litera- 
ture, particularly that which relates ecological visual perception is important to the 
intention recognition models developed later in the thesis. 

13 
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Section 2.5 The last decade has seen intelligent agent research subsume much of what 
was previously artificial intelligence. Areas of mainstream AI offer insights into 
important considerations for intention recognition. Specifically the focus on hybrid 
systems, certain types of pattern matching and the movement toward a 'Situated 
Ar. 

Section 2.6 The emphasis on the design-time interplay between the agent and the envi- 
ronment suggests that software design and the lessons of software engineering will be 
necessary in anchoring the practical, methodological side of this thesis. Design pat- 
terns, important in the object oriented community have been identified as important 
in the development of intelligent systems. 

Section 2.7 A discussion of ontologies can inform the design of agent modelling when, 
as is the case with intention recognition there are highly abstract (knowledge level) 
concepts involved, interactions between agents and system design issues to consider. 

2.1    Agents and Agency 

This section revisits the fundamental definition of agency, not to reopen what might 
be a rather futile debate, but to show that there are several important concepts in agency, 
perception being a significant one, that are common across all agent systems, are an 
integral part of agency, and will likely form part of a unified view of agency should one 
emerge. In the early 90's the 00 community went through several years of unifying 
fragmented views before a clear and consistent approach to building 00 software emerged. 
The agent academic research community has, in many respects, addressed the various 
definitional debates about agency and moved on. The multitude of views, definitions and 
opinions about agents is a property of the rich diversity of current research. This diversity, 
whilst healthy in a research community, can lead to difficulties in standards, pedagogy, 
and engineering practice. Without agreed common definitions about base concepts it is 
difficult to transition the lessons learned by the agent community into the classroom and 
industrial practice. So, though it is necessary to retain diversity to avoid stifling threads of 
research it is as important to move toward agreed definitions that can build a community 
of practice in industry. The definition of agency provided in Chapter 1 is not meant to 
stake a claim as the definition of agency. Rather it is indicative of the high level definitions 
that must be agreed upon if a unified view of agency is to be achieved. 

It has been noted by Wooldridge and Jennings [188] that there are dangers for the agent 
developer in ignoring emerging standards. As experience with agent systems development 
grows, the successful reapplication of techniques, architectures, tools, and knowledge will 
require a unified view of agents. Efforts to standardise aspects of agency are proceeding in 
a number of quarters with the Agent UML [132], standard ontologies [63], and the work 
of FIPA [142] and the development of the KQML [49] being obvious examples. Those 
seeking to apply the results of agent research in an industrial setting must first ascertain 
the relationship between their model of agency and these evolving structures. 

Specific types of agents require mobility, social ability, rationality, intelligence, and 
other properties but the generic definition above will cover the broad features.   Some 

14 
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might argue that the concept of proactivity or goal directed behaviour is important as 
it provides a clear distinction from objects that are generally considered reactive. Much 
of the research into agent theories is associated with defining, adding, and elaborating 
upon these extra features of agency. Elsewhere Juan et. al. [89] have addressed the 
problem of how to provide core definitions of agency with flexible variations for specific 
domains, agent theories, and languages much in the way that the UML provides profiles 
for particular modelling activities [7, 4]. 

It is still worth considering some of the different views of agent proposed over the 
last four decades—their common ground offers guiding insights for developers of agent 
technologies and methodologies. So from the foundations of agency in the 1950's comes 
the idea of agents as software servants answering human requests. 

"The idea of an agent originated with John McCarthy in the mid-1950 's, and the 
term was coined by Oliver G. Selfridge a few years later, when they were both at the 
Massachusetts Institute of Technology. They had in view a system that, when given a 
goal, could carry out the details of the appropriate computer operations and could ask 
for and receive advice, offered in human terms, when it was stuck. An agent would be 
a 'soft robot' living and doing business within the computer's world."—Kay [93] 

Notions of goal-directedness, autonomy, human surrogacy and knowledge-level inter- 
actions are clearly important even in this early definition and have recurred ever since. In 
this vein Wooldridge states that: -*&'- 

"An agent is an entity with four properties: autonomy, proactiveness, reactivity, and 
social ability. "—Mike Wooldridge [184] 

Other views of agency, no doubt influenced more by embedded systems, robotics, 
cognitive modelling, and what Jordan and Russell call the "situated movement in AI" [88], 
strengthen the idea of agents as situated in an environment. Adding an environment to the 
mix introduces the idea that the agent must perceive to support its autonomous action. 

"An autonomous agent is a system situated within and a part of an environment that 
senses that environment and acts on it, over time, in pursuit of its own agenda and 
so as to effect what it senses in the future."—Fanklin and Graesser [51] 

"Autonomous agents are computational systems that inhabit some complex dynamic 
environment, sense and act autonomously in this environment, and by doing so realize 
a set of goals or tasks for which they are designed."—Patti Maes [109] 

"Intelligent agents continuously perform three functions: perception of dynamic condi- 
tions in the environment; action to affect conditions in the environment; and reasoning 
to interpret perceptions, solve problems, draw inferences, and determine actions."— 
Barbara Hayes-Roth   [69] 

A more recent description of agency by Wooldridge agrees with these: 
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"An agent is a computer system, that, is situated in some environment, and is capable of 
autonomous action in that environment in order to meet its design objectives."—Mike 
Wooldridge [186] 

This shift observed over time is toward definitions that see agents as situated, mirrors 
similar related trends in AI research. This reflects the close links between AI and Intelligent 
Agent research. For many, the study of situated AI is the design of Intelligent Agents. 

An important characteristic of agency that emerges in many definitions is the idea 
that agents are concerned with more abstract processing than other software11. They ma- 
nipulate higher-level data and communicate in higher-level languages than other software. 
Nwana states this succinctly: 

"Lastly, and perhaps most importantly, agent-based applications operate typically at 
the knowledge level (Newell. 1982), not at. the symbol level as is the case in distributed 
computing applications. In any case, modules in distributed computing applications 
are not autonomous in the sam,e sense as described earlier for agent applications. The 
majority of software applications may be ruled out from the set of agent-based appli- 
cations on the same grounds that, expert systems or distributed computing applications 
are. ''—Hyacinth Nwana [129] 

The idea that agents operate at a higher level of abstraction is important for the 
software engineering community where abstraction is a valuable tool in the management 
of increasingly complex software and is one of the more widely published advantages 
resulting from the adoption of agent technologies [74, 84]. 

Bradshaw makes yet another important distinction: 

"Out of this confusion, two distinct but related approaches to the definition of agent 
have been attempted: one based on the notion of agenthood as an ascription made by 
some person, the other based on the description of the attributes an agent is designed 
to possess."—Bradshaw [9] 

The difference between ascribed and described agency will become an important aspect 
of dealing with intention recognition later in the thesis. Intentional states, important for 
modelling agent systems, are similarly capable of the same ascription/description demar- 
cation. 

Taking a software engineering view allows a partial reconciliation of Bradshaw's dis- 
tinctly different views of agency (See Figure 2.1). From this perspective agents are ascrip- 
tions and descriptions depending upon the phase of the engineering process. 

Further software engineering background is covered in Section 2.6 but the definitions of 
agency preferred by those agent researchers with a strong software engineering background 
and concerned more with the industrial application of agency are important in providing 
insights into the likely future of agents if they are to become a standard part of the software 
engineer's inventory of solutions. Jennings, for example, states the results of adopting an 
agent-oriented approach as: 

1 Even in the earliest definition of agency was the idea that agents should "ask for and receive advice, 
offered in human terms". 
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Users and subject matter experts 
involved in specifying the system. 
Ascribes properties of agency to assist 
in explaining the system requirements. 

The system design might be 
described in terms of agent 
concepts but if the final 
executable software is devoid of 
agent technologies then this 
design view exists part-way 
between agency as an ascription 
and agency as a description. 

Requirements Capture and 
Analysis 

Design 

A 
■ 1 > 

Testing and Deployment Implementation 

User ascribes agency to explain, 
describe and understand system. 
Ascription of agency is valid in all 
cases but most useful (in a 
software engineering sense) if 
similar concepts also manifest at 
the other software development 

Agent languages offer higher 
level concepts to describe (at E 
programming-level) the 
functioning of the system. 

Figure 2.1: A Software engineering view of Bradshaw's distinction between ascription and 
description. If the agent concepts ascribed by the subject matter expert as they envisage or 
use the software match the agent concepts present in the design and implementation then 
the system is strongly agent oriented. This matching of structures in the head of the user 
(ascription) to those internal to the system (description) is a primary advantage of agent 
technologies and can facilitate through life validation and verification. 
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"the key abstraction models that define agent-oriented mindsets are agents, interac- 
tions, and organisations."—Nick Jennings   [83] 

A similar emphasis on the social and interactional aspects of agency is provided by 
O'Dell and the other developers of the AUML [132] with the focus being on relationships 
between agents and not the development of approaches for the internal design of agents 
[96, 182, 185]. Agent software engineering development is being pushed by manufacturing 
process control, e-commerce and e-business, and web applications. The most pressing 
problems of this domain are the rapid proliferation of computer networks, typified by 
the spread of the web, that has generated legacy and integration problems for engineers 
tasked with connecting the disparate business systems of that were previously isolated. In 
addressing these issues it is the connections between agents, what Kinny et. al. calls the 
external model [96], that are more important than the detail of agent itself (the internal 
model). Though most agent oriented software engineering approaches concentrate on the 
agent aspects and provide little support for embedding agents into environments it is 
inevitable that as the field matures the environments in which agents are situated will 
receive increasing attention. 

Returning to the definition of agency that was proposed in Chapter 1: 

an agent is an autonomous entity situated in an environment that it 
can perceive, and in which it can act. 

Examining this definition in more detail: 

autonomous An agent has the capacity to act by itself. The agent selects its own actions 
and there is an implication that the agent is proactive as well as reactive. There is 
a tradeoff between communication, autonomy and the social aspects of agency. It is 
expected that an agent can often decide for itself the appropriate course of action 
or discover the relevant information. In this respect agents are expected to be more 
independent than other software. 

situated An agent is associated with an environment. It is linked with, via design, a 
particular environment and the association is two way. Agents influence the envi- 
ronment and vice versa. 

environment For the purposes of this definition the environment includes everything 
external to the agent. This can, of course, include other agents. 

perceive the agent has the capacity to perceive the environment. In simple software 
terms perception models the data entering the agent from all other components 
of the system. The important point here is that perception captures a sense of 
the proactive searching for data often associated with agents as well as the passive 
receipt of data from the environment. Describing the agent as having perception also 
carries something of the human metaphor that is a big part of the popularity and 
utility of agents. By this definition perception subsumes all of the possible inputs to 
the agent, including communication12. 

It will be seen in later sections that treating communication as just another form of perception has 
some advantages during design. 
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act the agent can take action to change the environment. Again in a simple software 
engineering sense, action subsumes all of the output from the agent. Like perception 
this subsumes communication from the agent. Again the human metaphor plays an 
important role here in lending intuitive understanding about what it means to act. 

Most proposed definitions of agency agree (or at least do not violently disagree) with 
this definition. Indeed this definition is deliberately broad and inclusive but there are some 
important points to note. The definition has aimed for wide coverage in the hope that most 
of the agent theories, architectures, and languages in existence can fit within this definition. 
The goal is a general definition that has broad coverage with specialisation available for 
particular theories, architectures, languages and domains. By being necessarily general 
it will need refinement and specialisations to handle particular classes of agent. The 
definition makes no claims about the social nature of agents and multi-agent systems. 
Researchers such as Tidhar point to the fundamental differences between agent systems 
and multi-agent systems [172]. This thesis does not directly deal with multi-agent systems. 
A discussion of the limitations of this thesis with respect to multi-agent systems is included 
in Section 8.3. Multi-agent systems are those where the agents have a social existence. 
This generally requires representing concepts such as identity, communication, and teams. 
Multi-agent systems are distinguishes here from populated single-agent systems where 
there are many agents but they have no concept of identity, they do not communicate, 
and they are aware of other agents only as observable entities in the environment that 
offer no particular opportunities for social interaction. 

This definition specifically accounts for the inputs to (perceptions) and outputs from 
(actions) an agent. It is widely reported [178] and widely accepted that the greatest number 
of software development bugs occur at the module interfaces. By explicitly defining the 
agent interfaces as a part of the basic concept of agency a step toward addressing some of 
these issues is taken. The perceptions and actions also start to define the signature of the 
agent and will guide the developer in reusing the agents across multiple projects. 

It is of course necessary to make some comment about the internal structure of the 
agent and it is here that other agent oriented software engineering methodologies and 
agent definitions make some strong claims to the nature of agency. Social aspects, mobil- 
ity, learning, and beliefs, goals, roles, memory, and many other concepts have been used 
to define agency and recommended as the basic concepts of agents that lead into analysis 
and design methodologies. Because of the fragmented nature of agent research and devel- 
opment this thesis will try where possible to remain agnostic with respect to the existing 
technologies and to develop methods applicable for many. 

2.2    Intention 

Dennett [39], Searle [159], Anscombe [2] and Wittgenstein [183, 2] are just a few of the 
throng of philosophers that have published several works dealing with role intention plays 
in theories of consciousness, planned action, rationality and intelligence. Some philoso- 
phers are more concerned with the role that intention plays in directing rational decision 
making and guiding future action.  For example, Bratman's work on rational agency in 
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the context of practical reasoning takes intention as the core attitude that directs future 
planning. 

"Much of our understanding of ourselves and others is rooted in a commonsense psy- 
chological framework, one that sees intention as central. Within this framework we 
use intention to characterise both people's actions and their minds. [...] these char- 
acterizations provide a basis for our everyday attempts to predict what others will do, 
explain what they have done and coordinate our projects with theirs."—Bratman [10] 

Many agent researchers have recognised the importance of intentions in developing use- 
ful agent theories, architectures, and languages. Rao and Georgeff [149] developed a model 
of agency (BDI) that led to the commercialization of several high-level agent languages. 
Cohen and Levesque [32], Grosz and Kraus [61], and Konolige and Pollack [99] have each 
added valuable contributions to the growing literature dealing with the theoretical basis 
for incorporating theories of intention into agent research. The software engineering com- 
munity is also starting to embrace the idea of intentions, though mainly with respect to 
user modelling for interface design [68] or forensics [87]. 

There are few proposals to use the concept of intention in an agent oriented software 
engineering context. In a thesis dealing with intention recognition it is to be expected 
that intention will play an primary role in the specification of an agent system. Intention 
recognition, whilst a useful and valuable functional capability for some agents, and the 
main thread of this thesis, is by no means universally applicable. Only a percentage 
of the agent systems under development might actually require an intention recognition 
capability. For those systems that require an intention recognition capability intentions are 
an important, even primary, component during specification, design and implementation. 
Stronger views regarding the intrinsic importance of intention to all forms of agency have 
been made. It has been previously claimed that: 

"intention is a property of agency suitable for the analysis and design of all sufficiently 
complex agent systems regardless of their particular internal structure.'"'—Heinze [70] 

By elevating intention to a fundamental concept of agency it assumes an important 
role in the development of an agent system. Exactly what role intention plays will depend 
upon how far through the software life-cycle the representation of intention can be carried. 
Just as agency itself can be an ascription or a description (see Section 2.1 and [9]) so too 
can intention be an ascription: a property of an agent useful to the specifier and user of the 
system; or a design or implementation level description of an agent useful to the designer 
and programmer. This thesis supports the view that for any sufficiently complex agent 
system regardless of the architecture or language chosen 'intention' is a fundamentally 
important concept. Intentionality can be an ascribed or described property of a system in 
precisely the same way that agency itself can be an ascription or a description at different 
stages of the software life-cycle. It has been observed by the developers of agent systems 
that embody folk-psychologic constructs that the intuitiveness and inherent familiarity 
that they offer simplifies aspects of software development. Whether or not the implemented 
system explicitly describes these constructs it seems probable that ascribing them might 
have utility during the earlier phases of software development. 
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2.2.1    Intention as Ascription 

Ascription theory [160] has formed the basis for a number of important works in 
philosophy and psychology. Dennett, for example, argues convincingly that the ascription 
of intent is a perfectly reasonable, and indeed highly successful, way of predicting and 
describing the behaviour of systems that are complex enough to avoid explanation from 

other stances. 

Dennett offers three stances that can be adopted to explain and predict the behaviour 
of systems. The physical stance operates entirely upon knowledge of physical composition 
and of the laws of physics. Those who advocate Laplace's deterministic universe might 
suggest that everything is explainable (at least theoretically) from this stance. Certainly 
many things are capable of being predicted by the laws of physics but: 

"Sometimes, in any event, it is more effective to switch from the physical stance to what 
I call the design stance, where one ignores the actual (possibly messy) details of the 
physical constitution of an object, and, on the assumption that it has a certain design, 
predicts that it will behave as it is designed to behave under various circumstances. For 
instance, most users of computers have not the foggiest idea what physical principles 
are responsible for the computers highly reliable, and hence predictable, behaviour. But 
they have a good idea of what the computer is designed to do."—Daniel Dennett   [39] 

There are systems that avoid explanation from the even the design stance however and 
for these Dennett advocates the intentional stance. 

"Sometimes even the design stance is practically inaccessible, and then there is yet 
another stance or strategy one can adopt: the intentional stance. Here is how it 
works: first you decide to treat the object whose behaviour is to be predicted as a 
rational agent; then you figure out what beliefs that agent ought to have, given its 
place in the world and its purpose. Then you figure out what desires it ought to have, 
on the same considerations, and finally you predict that this rational agent will act to 
further its goals in light of its beliefs. A little practical reasoning from the chosen set 
of beliefs and desires will in many—but not all—instances yield a decision about what 
the agent ought to do; that is what you predict the agent will do."—Daniel Dennett 
[39] 

McCarthy summarises the position well. 

"To ascribe certain beliefs, free will, intentions, consciousness, abilities or wants to 
a machine or computer program is legitimate when such an ascription expresses the 
same information about the machine that it expresses about a person. It is useful 
when the ascription helps us understand the structure of the machine, its past or 
future behaviour, or how to repair or improve it. It is perhaps never logically required, 
even for humans, but expressing reasonably briefly what is actually known about the 
state of the machine in a particular situation may require mental qualities, or qualities 
isomorphic to them. Theories or belief, knowledge and wanting can be constructed for 
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machines in a simpler setting than for humans and later applied to humans. Ascription 
of mental qualities is most straightforward for machines of known structure such as 
thermostats and computer operating systems, but it is most useful when applied to 
entities whose structure is very incompletely known. "—McCarthy [113] 

Adopting the intentional stance occasionally requires the ascription of intention to 
objects, agents, or entities without intent. It matters not, the intentional stance is still 
highly successful as a predictive tool: useful regardless of the internal structure. Russell 
and Norvig see this as a disadvantage: 

"The "intentional stance" has the advantage of being based solely on the entity's be- 
haviour and not on any supposed internal structures that might constitute "beliefs1'. 
This is also a disadvantage, because any given behaviour can be implemented in many 
different ways. The intentional stance cannot distinguish among the implementations. "— 
Russell and Norvig [156] 

But in a software engineering context where abstraction and implementation indepen- 
dence are valued, the inability to distinguish from among implementations is actually a 
advantage. Prom a software engineering perspective ascribing intention will be most useful 
if there is some associated manifestation of that intention in the resulting software. Its 
utility in any case is that it provides intuitive insights into the workings of the system 
that accord with everyday folk psychological attributions that, according to Dennett are 
the human stock in trade for predicting the actions of complex systems13. 

2.2.2    Intention as Description 

Some particular classes of agents, prototypically characterised by Rao and Georgeff's 
BDI agent model [149] or other cognitively inspired alternatives [99, 32], regard mental 
attitudes like intention as fundamentally important. Just as intentionality has an im- 
portant role in the philosophical understanding of human behaviour there are a class of 
software agent systems that take intentions to be of primary importance in the descrip- 
tion of agent behaviour. These agents typically include some manner of programming 
languages support for the representation, generation,, and execution control of intentions. 
Examples include dMARS [42], UM-PRS [106], JAM [164], JACK [20], RIMA [11], and 
Attitude [104]. Programming support for representing intentions helps distinguish these 
languages them from agent systems that offer no such explicitness. A brief account of one 
of these languages follows. These agent systems provide the software engineer with the 
programming level tools necessary to describe agent behaviour in terms of intentions and 
related mental attitudes. For agents constructed from these languages an observer can 
still happily ascribe intentions to the agents but now these ascription can be grounded (if 
necessary) in concrete manifestations of intention within the executing agent. 

There is a corresponding view from developmental psychology where, it is argued by Olson et. al.. 
there is a difference between ascribing intentional states to those that can also ascribe them to themselves 
(adults) and those that demonstrably cannot (children under the age of three) [191]. 
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2.2.2.1    dMARS 

dMARS is a multi agent architecture that implements a BDI model of agency based 
on the concepts of intentions, plans and practical reasoning developed by Bratman [10]. 
Further information about the underlying formalism of dMARS is available in [148] and 

[150]. 

Every dMARS agent comprises a set of beliefs, desires (goals), plans and intentions. 
The beliefs of an agent are stored symbolically in a relational database. Beliefs may refer 
to hard physical data sensed from the environment, more abstract concepts that are the 
product of some reasoning process, or representations of the internal state of the agent. 
The goals of an agent are descriptions of required behaviors or desired outcomes. The 
plans are graphical representations of procedural knowledge for specifying actions to take 
to accomplish these goals. The intentions are plan instances selected for processing to 
achieve a goal. They represent commitments by the agent to the achieving of a goal 
through the course of action specified by the plans. The graphical nature of plans allows 
them to be displayed during the simulation through the dMARS Control Interface. This 
feature allows the plans adopted by the agent to be displayed and the current state of the 
agent reasoning evaluated during the simulation. This gives observers visibility into the 
intentions actually adopted and executed by the agent. With careful design these plans 
can be read and understood by lay-people with little or no additional explanation. A 
detailed description of the dMARS system as it pertains to air-combat modelling can be 
found in [171] and further dMARS specific information may be obtained from [42]. 

dMARS has been used as the agent language for several large projects [37, 116, 151]. 
It has been chosen as the implementation platform for some of the agent components of 
the example systems described in Chapter 7. 

2.3    Intention Recognition 

In Chapter 1 the following simple definition of intention recognition was provided. 

intention recognition is the process by which an agent becomes aware 
of the intention of others 

Before embarking on a discussion of the relevant background it is worth considering why 
intention recognition is necessary at all. Clearly there is a link between communication and 
intention recognition. Humans use both verbal and non-verbal queues to help ascertain 
the intentions of others. Developers of agent systems also make use of both verbal and 
non-verbal actions to provide insights into the reasoning of their AI [141]. 

"an actors internal state is made visible in three ways: language (spoken dialogue, even 
aliens can still convey mood, e.g. wort wort wort), different animation postures based 
on intention (sneaking, running, hiding), and specific animation triggers (gestures, 
canned dive/roll movements)."—Chris Butcher and Jaime Griesemer [21] 
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The relationship between intention recognition and communication can be seen best by 
considering intention recognition as a requisite for coordinating activity when communica- 
tion is disabled. If communication is reliable and the agents are capable of fully and hon- 
estly and expressing their intent in an understandable fashion then intention recognition 
reduces to communication. There is no need for sophisticated inferencing, hypothesising, 
guessing, deducing, or evidence gathering. An agent simply asks another about its intent 
and the response provides all of the necessary information. 

Without communication or other reasonably direct access to mental attitudes of oth- 
ers, to inform intention recognition it is necessary to rely on observations of the effects 
of their actions. It might seem that simply ensuring perfect, reliable communication of 
intention between agents offers a simple and efficient approach to intention recognition. 
Unfortunately there are many reasons why for almost all systems this solution is imprac- 
tical. These reasons are useful to consider because they provide insights into constraints 
on the design of intention recognition that will guide the selection of better solutions. 

Communication is unavailable In some systems it is not possible to implement direct com- 
munication between the agents. There are many reasons why this would be so. It may be 
bandwidth related, perhaps the agent is incapable of communicating. 

Communication is unreliable The Byzantine Generals Problem [105] and its variants indicates 
the unreliability inherent in communication in certain situations. For many of these types of 
problems no communications based solution exists. Strategies for overcoming the difficulties 
of agent "mind-set synchronisation" exist but even without these logical design difficulties 
in distributed systems something as simple as the lack of a communication channel caused 
by a temporary hardware fault or transport delay can make communication unreliable. 

Communication is uneconomic Communication is often very expensive. The lessons of dis- 
tributed AI suggest that a balance between inter-process communication and processing 
needs to be achieved. If care is not taken the communication between distributed processes 
outweighs any advantage in distributing the problem in the first place. So in considering per- 
formance issues, particularly in real-time systems, balancing processing and communication 
is clearly an issue and understanding the balance is central to achieving good designs. 

Communication is un-agent One of the advantages of agents is their inherent autonomy. By 
their very name they are expected to operate by themselves and require less assisting commu- 
nication than some other non-agent solutions. That is not to suggest that agents shouldn't 
ever communicate—clearly communication is a very important part of the design of an 
agents. Overcoming problems by communicating more and more data to the agent when 
intuition suggests that the agent should be solving the problems for itself seems to violate 
the very notion of agency. Clearly care must be taken in balancing autonomy with the need 
for communicated assistance. 

Communication is undesirable In competitive or combative situations communication is un- 
desirable or might be deliberately deceptive. In commercial situations when security is of 
concern any communication must be treated cautiously. Similarly in military simulation 
where agent adopt adversarial roles any communication of intent to an opponent is unwise. 

Communication is unrealistic The issue of 'realism' in agent systems becomes important when 
agents are used as computational models of real people. If agents are used as computational 
models of human cognition then there may be modelling fidelity requirements that dictate 
that the agents should not communicate if humans placed in a similar situation would not 
communicate. This is particularly relevant to military simulation where maintaining mod- 
elling validity with the real world is very important. 
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Communication is not understandable In heterogeneous agent systems it is likely that agents 
might speak different languages thus limiting the possibility for communication. Efforts to 
standardise communication languages [49, 50] continue but as yet it is likely that something 
as sophisticated as communication of intent is beyond the scope of these standards. 

Viewing the content of observed actions as having a similar consequence with respect to 
intention recognition as communication suggests certain approaches for modelling intention 
recognition. This idea is elaborated in Chapter 3. These limitations refer specifically to 
the nature of communication but there are also impediments related to the content of the 

message. 

Lack of Intention Not all agent models include an explicit representation of an intention, or even 
something that might pass for intention. Without an internal representation of intention the 
agent would need to construct some plausible representation of intention that modelled its 
behaviour for the exclusive purpose of communicating with others. This would seem to be 
highly impractical. 

Intention is Complex Simply because an agent has an intention does not mean that it can com- 
municate the important aspects of that intention to another. The specific implementation of 
intention within the agent would need to be communicated and that would depending upon 
the type of agent perhaps the sending a great deal of information about the goals, beliefs, 
plans, motivations or whatever the internal design of the agent dictated. In the extreme the 
entire internal state of the agent might need to be transmitted in order that intent can be 
correctly interpreted. 

Intention is Contextual Intentions are often highly dependent on context. A high-level descrip- 
tion of an agent's intent might not make sense without an understanding of the environment 
in which the agent exists. In order to communicate intent it might also be necessary to 
include a great deal of contextual information dealing with the surrounding environment. 

Intention Recognition is Purposive An agent recognises the intent of another for a purpose. 
The depth of understanding of an intention that is required by an agent depends upon 
why knowledge of the intention is required. It might be that an agent needs only the 
broadest understanding of the intent. Simply knowing the general class of intent is adequate 
and details are unimportant. In order to obtain the appropriate level of detail a dialogue 
between agents would be necessary. In this light intention communication must be extended 
to a conversation between agents about the intention of one of them. This dramatically 
increases the complexity of intention communication from a simple broadcast by an agent 
to a negotiation about the nature of its intention. 

With these limitations in mind it is easy to see that some form of intention recognition 
is likely to be needed to support coordinated or competitive activity in many domains. 
The following sections quickly references some of the more significant domains in which 
intention recognition is an identified requirement. 

2.3.1    Human Intention Recognition 

In everyday life human interaction requires ongoing and complex intention recognition. 
In competitive activities the need for intention recognition can be obvious but even in 
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simple conversations humans are predicting the future direction of the conversation and 
the reaction of the other persons by recognising the intent manifested in the conversation. 

Any in depth analysis of human intention recognition is outside the scope of this thesis 
but a quick examinations of some of our everyday understanding of intention recognition 
will shed light on the remainder of the thesis. Often intention recognition is performed sub- 
liminally. Conversations unfold and subtle queues are reacted to without much conscious 
thought given to the underlying motives of the other. 

Military focussed research into intention recognition is in the ares of automated support 
for the decision maker using data fusion and threat assessment tools [122, 190]. These tools 
are developed to process data from sensor networks and to assist the user in detecting 
and classifying targets or in determining the threat posed by unknown or hostile threats. 
The level of threat posed by a hostile contact is tied closely to inference of its intent. 
Endsley [44, 45] and others use a three level scale to classify the activities related to 
situation awareness. Level one situation awareness covers identification of friends and 
adversaries. Level two is the identification of the situation and the development of an 
understanding of the current activities of all participants. Level three situation awareness 
is the prediction of the future actions of others. 

Most descriptions of intention recognition in practice posit a process that sees an expert 
sense the world, maintain hypotheses, and test and monitor for supporting evidence there 
is some more recent research that runs counter to this. The naturalistic decision making 
literature, adopts the ecological psychologists view of the fundamental importance of the 
environment and the very situated nature of humans and environment. NDM suggests 
that experts just know. There is little hypothesis evaluation or time spent on complex 
reasoning they simply recognise situations as a result of their experiences [194]. Norling 
and Heinze [126] have suggested a set of modifications to a rational agent architecture that 
allow for modelling of aspects the phenomena described by NDA. Zhang and Hill [192] 
have utilised similar templatised descriptions for modelling situation awareness in virtual 
worlds. 

2.3.2    Agent Intention Recognition 

Various approaches to implementing agent based recognition have been proposed [27, 
92, 121, 91, 3]. These approaches to intention and plan recognition are grounded either in 
computer science or cognitive science. As such they inevitably adopt approaches that see 
complexity added to the internal computation of the agent. The standard is to observe 
the actions of others and to infer the internal states. This is natural enough from a cog- 
nitive modelling perspective in that it meshes with the sense and infer view of perception 
that dominates the psychology literature [177] and accords with the view of agents as 
autonomous. Even in multi-agent environments where the inference process must cater 
for uncertainty about the identities of the actors or their social structures the process is 
basically unchanged. Kaminka et. al. continue this thread of "observe and infer" in a 
multi-agent setting adopting an approach that is not too dissimilar from an earlier proposal 
by Tidhar and Sonenberg [162]. 
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"Traditionally, agent modelling researchers have explored techniques in which two 
agents are involved. In such techniques one agent observes the actions of another agent 
and attempts to infer its unobservable state features, such as intent, goal. plan."— 
Kaminka, Wendler and Ronen   [90] 

Agent modelling researchers seem reluctant to consider that either the environment or 
other agents might be specifically engineered to assist in the intention recognition process. 
This might be oversight, it might be due to a focus (to the exclusion of other aspects) 
of the agent, or it might be due to concerns about autonomy of the type expressed by 
d'Inverno and Luck. 

"In multi-agent systems, the interactions between agents are the basis for usefully 
exploiting the capabilities of others. However, such a pragmatic approach has not been 
the concern of many researchers who instead focus on small areas of interaction and 
communication, and in particular on specialised forms of intention recognition and 
interpretation. In many existing models of interaction agents are not autonomous."— 
d'Inverno and Luck [43] 

It seems that in many applications there might be a trade-off between 'true' autonomy 
and cooperative or collaborative behaviours. Certainly their warning is valid though rather 
than adopt an approach that attempts to preserve autonomy outright this thesis will 
consider autonomy as yet another property of agency that might need to be traded-off 
against functionality to meet a given set of requirements. 

There are cases where the agent whose intent is to be recognised is not amenable to 
engineering. This is certainly the case when the human intentions are to be recognised 
or when the agent lies outside of the design scope but there are many systems where the 
intending agent can be designed to enable intention recognition. 

2.3.3    Agent Intention Recognition: A Case Study 

A mature14 example of an intention recognition capability operating in an multi-agent 
system is the one described theoretically by Rao and Murray [151], implemented as an 
extension to a commercial language by Busetta and Tidhar [19] and taken to a simple 
technology demonstrator by Tidhar, Heinze et. al. [168]. Bratman's philosophical insights 
that led to the BDI systems were intimately related to practical reasoning. Philosophers 
often characterise rational cognition as being composed of a practical component (what to 
do) and an epistemic component (what to believe) and it is here that BDI systems suffer 
certain limitations. Whilst BDI languages are inherently concerned with beliefs they offer 
no particular insights or support for the manner in which belief is created, maintained, 
or revised. Further there is no model of the environment and the way in which the agent 
perceives, observes, or recognises the world, or in the case of multi-agent systems, other 
agents. BDI systems that are well suited to practical reasoning are less well suited to 
epistemic reasoning. More fundamentally, there is no support for perception, observation, 

"Mature in the sense that it is accompanied by an underlying theory and a set of programming language 
constructs in a commercial language. 
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sensing, and the other activities that characterise the ways in which agents must support 
their epistemic reasoning. 

Within these limitations it is still clearly possible to construct a recognition of intention 
mechanism that can either (a) introspect over own plans to infer the currently executing 
plans of another [151] or (b) introspect over a predetermined set of possible plans [19]. 
In these cases and in most other systems exhibiting plan, goal and intention recognition 
some form of hypothesis tree is maintained with evidence being sought for accepting or 
rejecting particular options until ambiguity is resolved. Other systems integrate different 
technologies to handle the different aspects of agent cognition. 

Systems for implementing resource bounded reasoning that define plans as structured 
descriptions for goal achievement have been used to implement complex human decision- 
making models. These systems use pre-specified plans as recipes [146] for the achievement 
of pre-specified ends. Previous research into plan recognition in these agent systems has 
required that the agent be provided with explicit representations of candidate plans [147. 
151]. 

Work by Rao [147] tackled the reactive recognition problem by making simplifying 
assumptions about the nature of the environment: (a) the agent has perfect knowledge of 
the plans available to other agents; (b) the complete set of plans over which recognition 
is attempted remains small; (c) the agent has no memory of events that occur; and (d) 
the world is unchanging during the period of recognition. Whilst these assumptions result 
in serious constraints over the proposed model they do provide the basis for intention 
recognition that integrates well with the BDI model of Rao and Georgeff [149]. 

Work by Bussetta and Tidhar extended the functional capabilities of this type of plan 
recognition to remove the assumptions c and d [19] and to develop an operational extension 
to dMARS. A demonstration of the capability of this system to recognize mental states 
within a military simulation was constructed. These extensions to the computational 
BDI model added a model of memory and were able to incorporate some of the temporal 
aspects required for mental state recognition. The first two assumptions still limit the 
performance of system. In attempting to model human cognition it may be unrealistic 
(and perhaps impractical) to provide an agent with perfect knowledge of the plans of 
other agents. This is true in heterogeneous systems where agents must recognize the 
mental states of real humans, or of different varieties of agents that do not possess explicit 
representations of plans in a form understood by the agent attempting the recognition. As 
the complexity of the environment, agents, and their interactions increases, the set of plans 
over which recognition must be attempted will increase. Every agent within the system 
must be provided with a representation of the plans of all other agents that it is expected 
to recognize. Second order recognition (I recognize that she/he has recognized my plan) 
complicates this significantly and in complex domains will quickly become unwieldy. 

Construction of the military simulation incorporating intention recognition revealed 
the problem that tends to beset much of the agent community involved in mental state 
recognition—perception. The BDI model [149] and the subsequent languages. PRS, dMARS, 
JAM, and JACK offer no inherent support for modelling perception. The agent model 
and languages provide an excellent framework for implementing practical reasoning but 
epistemic reasoning and the means by which knowledge of the world comes about is largely 
ignored.   Given the heredity of BDI and its roots in Bratman's rational agency and its 
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focus on practical reasoning (to the detriment of epistemic reasoning) this is unsurprising 
but it leads to inevitable integration difficulties whenever a BDI agent must be integrated 
into a dynamic, complex environment. The solution described by Rao and implemented 
by Busetta and Tidhar addresses the agent issues by requiring the programmer to specify, 
design and code the "observations". Intention recognition is limited to an infrastructure 
for producing a set of hypothesised possible plans and removing or retaining them on 
the basis of these observations. It deals with the practical aspects but not the epistemic 
aspects. The complexity of modelling the perception required for these observations was 
still a significant impediment to the implementation of intention recognition. 

These limitations aside, the demonstration provided a most valuable indication of the 
impact that intention recognition can have on military simulation by demonstrating the 
capacity for aircraft to avoid feinting or deliberately deceptive behaviour. The solution is 
in keeping with the conceptualisation behind the BDI model. It could be argued with some 
justification that a strength of the agent paradigm lies in the higher level of abstraction it 
offers. In the case of dMARS and JACK their relevant developers would both argue that 
the abstract specification of their reasoning is a strength and not a limitation. That this 
makes some tasks of modelling perception difficult is a limitation of the environments into 
which agents are placed and not the agents themselves. 

2.4    Situated Cognition and Ecological 
Psychology 

The situated cognition and ecological psychology literature describes the strong links 
that tie perception, action and cognition to the environment. The status of situated 
cognition and ecological psychology is still hotly debated and the arguments for against 
often reduce to the behavioural psychology versus cognitive psychology battle that has 
been fought for more than a century. Whether or not the claims of Gibson, Clancey and 
other advocates are believed often distills into fundamental ontological and epistemological 
stances15. 

"Especially in the philosophical literature, the claim that vision involves inference typi- 
cally derives from certain general considerations about the nature of empirically gained 
knowledge. The basic idea running through most versions of this criterion is that there 
is an epistemologically important difference between what we can "really" ("simply", 
"directly", or "immediately") see and some of the other things that we can find out 
about by means of vision."—Robert Schwartz [158] 

In the real world, filled with real people there is little doubt that psychologists will 
debate the issues for many years to come but in virtual worlds (if the temptations of good 

15There is an analogy between the views that Schwartz contrasts here and the broad separation of the 
agent-ontology community into two camps. There are those that argue that ontologies should be global— 
suitable for all agents. This makes a strong statement that there can be an objective reality to which 
agents commit. This reduces the chance for agents to develop local, subjective views of their individual 
realities. To be fair the agent ontology community is proposing standards for strongly pragmatic reasons 
rather than adherence to some philosophical standpoint. 
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old fashioned AI are resisted and a pragmatic approach adopted) there are insights from 
situated cognition and ecological psychology for the construction of agent systems. 

For example, failure to appreciate the non-symbolic nature of sub-conscious aspects 
of perception has led to difficulties in modelling at the interfaces between agents and 
environments16. Clancey states this in 'Situated Cognition': 

"Conventionally, the term, symbolic processing is used to refer to what people and ex- 
pert systems do, misrepresenting the subconscious aspect of conceptualisation and thus 
superficially equating reasoning with the calculus of descriptive cognitive models. "— 
William Clancey [30] 

Further, Clancey critically assesses the close links between activity and perception that 
are ignored by the philosophical camps that ignore or oppose situated cognition. 

"Fodor and Pylyshyn do not acknowledge the distinction we experience between direct 
perception ("I felt it and knew") and inference. ("I noted, checked, and confirmed''). 
Instead they say, "Object recognition, for example, is a perceptual process par excel- 
lence, and it appears to be cognitively penetrable through and through. But object 
recognition is not a unitary phenomenon... The elevation of recognition to a primary 
phenomenon in psychology, existing independently of purposes and action highlights 
the mistake: perceiving is not primarily identification but functional differentiation, 
part of an activity. "—William Clancey [30] 

The simple message of ecological psychology and situated cognition is that the environ- 
ment and the agent are more intricately entwined particularly with respect to perception— 
the primary interface between the two. The environment should be considered as some- 
thing that changes in response to the state of the agent just as the agent responds to 
changes in the state of the environment. This perspective has been largely ignored in 
the agent literature, there are several application domains that have (often unwittingly) 
adopted the approach for sound engineering reasons17. This has implications for modelling 
of environments as well as the modelling of agents as highlighted by Turvey and Shaw. 

"A change of pace or a change of location can mean that a brink in the ground 
now affords leaping over whereas at an earlier pace or location it did not. [...] The 
environment-for-the-organism is dynamic and action-oriented while the environment- 
in-itself. that which has been the target of most modelling in the latter decades of the 
present century, is fixed and neutral with respect to the organism, and its actions..."— 
Turvey and Shaw  [173] 

With intention recognition in mind the ecological psychology literature of most interest 
is that which deals with perception of the environment. Traditional theories of perception, 
the theory of perceptions as hypotheses, or 'indirect perception', claims that it is not 

Chalmers, French and Hofstadter warn of a related problem when the state that AI research has failed 
to appreciate the very tight coupling that exists between high-level perception and cognition [26]. 

17Several examples of this are given in Chapter 3. 
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possible to be directly aware of the actual physical world [177]. Human vision adds to the 
incoming sensory data by inferring higher order properties and structures. To make sense 
of the world requires that the sensory data is somehow elaborated and abstracted into 
models, schema, hypotheses, pictures, or mental images. The process of elaborating and 
abstracting sensory information depends on memory, experience, situation, emotional and 
physical state and all of the mental aspects that collectively determine how the perception 

of objects occurs. 

J. J. Gibson countered this theory with a radical proposition that resulted from his 
study of ecological psychology. Gibson proposed that animals and environments have 

co-evolved: 

"The words 'animal' and 'environment' make an inseparable pair. Each term implies 
the other. No animal could exist without an environment surrounding it. Equally, 
though not so obvious, an environment implies an animal (or at least an organism) to 
be surrounded. "—Gibson The Ecological Approach to Visual Perception 

This co-evolution has attuned vision directly to the higher order structures18 that 
exist in the environment and they are directly perceived (See Figure 3.2 and refer to 
Section 3.2 for more detail). Gibson's theory is at its most controversial when the concept 
of affordances is introduced. Affordances are properties of objects in the environment that 
offer action possibilities to the observer, a chair for example has a 'sit upon' affordance. 
Affordances, Gibson claims, are directly perceivable in the environment in precisely the 

same way as color or size. 

The notion that objects are envisioned in terms of the action possibilities that they 
afford was extended by Norman [127, 128] by incorporating affordances into design. The 
idea that agent systems might be similarly treated and designed in terms of their affordance 
is explored in later sections of this thesis. 

2.5    Intelligent Agents and Artificial Intelligence 

There are two distinct but related views of artificial intelligence. One is concerned 
with the construction of intelligent artifacts that serve useful purposes and is therefore 
primarily an engineering endeavour. The second is the investigation of the computational 
modelling of human cognition—and is therefore primarily scientific in nature. The latter 
has led to insights into human intelligence as well as passing useful theories and ideas 
to the engineering community to adopt and make mainstream. Recently AI has been 
transformed (at least partially) by flourishing agents research that shares these two facets. 
Some agents research is associated with applying, studying, modelling, or learning from 
human behaviour. Others are less concerned with human behaviour and more concerned 

18Gibson referred to these as invariants. There are two types of invariants: transformational invariants 
that govern the manner in which objects change as they move; and structural invariants that relate rela- 
tionships between objects regardless of their locations. An example of this is the property that the ratio 
of an object's height to the distance between the base and the horizon remains constant for all locations 
of the viewer. 
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with engineering of artifacts that display behaviour that might be classified as intelligent- 
even if it shares little in common with human behaviour. 

Throughout the last decades there has been a shift from monolithic general problem 
solvers and large expert and rule-based systems toward computation that is smaller, social, 
embedded, mobile, and networked. In making this shift AI has been transformed from the 
study of human intelligence (singular, isolated, and disembodied) to the study of human 
intelligence (social, plural, and situated). A side-effect of this is that the boundaries of 
agents (the points at which they mesh with the environments they inhabit) now pose a 
number of problems to those who would design and develop agent systems. 

The importance of the environment in conditioning the design of agents has been 
recognised: 

"When one thinks about building intelligent agents, it quickly becomes obvious that 
the task environment in which the agent will operate is a primary determinant of the 
appropriate design. "—Michael Jordan and Stuart Russell  [88]19 

Though recognising the importance of the environment in conditioning the design of 
the agent few (if any) acknowledge that the agent and environment are coupled for the 
purposes of design and that the environment might be specifically engineered to meet the 
requirements of the agent. 

The internet, as the largest example of a virtual world, is one environment where 
steps have been taken toward agent-friendliness. The early life of the web was based 
around HTML and structured pages in ways suitable for access by browsers that presented 
information to users via a display. XML and other approaches to structuring knowledge on 
the web provide support for agents, bots, search-engines, b2b protocols etc. in traversing, 
finding, learning and navigating. For more information on the importance of labelled 
environments to agent design see Section 3.3). 

2.5.1    Perception and Related Issues 

In order to act within an environment an agent must be provide with sensors that 
allow appropriate perception. In the case of robots these sensors are normally machine 
vision systems, natural language processing and understanding systems, haptic systems or 
some other customised sensory apparatus that provides an interface to the real world. In 
virtual worlds the sensors might not need to be quite so complex, virtual worlds tend to 
be simpler, discrete, and designed. Even so the interface between agent and environment 
requires careful design. 

"The data input and output subsystem, must be carefully matched to the task performed— 
adequate sensors and effectors must be provided, and go a long way in bringing about 
the agent's functionality.  Attempts to skimp on the I/O and compensate for it with 
more computation are normally ill fated."—Brustoloni [16] 

19See also the quote by O'Dell in Chapter 1. 

32 



DSTO-RR-0286 

Perception is the means by which an agent senses and makes sense of its environ- 
ment. Exactly which processes should be included into the broad definition of perception 
is somewhat controversial. Indeed the means by which human perception integrates with 
cognition is hotly debated making the task of creating an artificial intelligence that resem- 
bles human intelligence even more difficult. 

Perception is continually included in the list of important agent concepts (see Sec- 
tion 2.1). It is clearly also a very important component of intention recognition. Intention 
recognition is a process that straddles the boundary between cognition and perception. 
To recognise the intent of another seems to imply some high-level cognitive processing and 
yet there are times when it seems intuitive, and hence inaccessible to introspection [194]. 

It was noted in Section 2.1 that agents typically function with more abstract data than 
other software. Converting from the low-level data available in the environment to the 
knowledge-level structures required by the agent is appropriately handled by perception. 
In this role perception acts as a bridge over the abstraction gap [77]. 

In addition to sensing the environment, the social nature of agents means that they 
communicate with other agents. Even if this communication is mediated by the environ- 
ment the fact that agents all function with knowledge level concepts means that translation 
at the knowledge level and not abstraction is the important issue [84]. Thus perception 
might also be viewed as the mechanism by which knowledge level concepts are translated 
from one agent to another. Or, adopting the language of the ontologies literature: per- 
ception is the process of mapping the data in the environment into the more abstract 
representations of the agent ontology; and perception is the process of mapping from one 
agent ontology to another. 

The machine vision system of a robot might perceive a colored pole based upon its 
edge detection algorithms and determine that it has a color property of being red and 
yellow. Within the robot there will be some mapping from the raster scans of its vision 
system into objects, which when assigned meanings can be reasoned about. Each object 
must be detected, isolated, tracked, identified, and interpreted. This process is highly 
complex and machine vision systems are amongst the most sophisticated robotic software 
applications developed. Machine vision is really only necessary in dynamic real worlds. 
If the world in which a robot operates is fairly static then a vision system may not be 
necessary. Manufacturing robots daily build cars with only location and contact sensors 
as guide. The regularity of their world means that they don't require the sophistication 
of vision. A manufacturing robot working on a production line repetitively performing 
the some welding task can be considered to be living in a highly designed environment. 
Careful design of the environment ensures that the robot is not presented with situations 
outside the limits of its simple sensors. This is a very good example of how environmental 
design mitigates against agent perception complexity. 

The classic robotics literature challenge for a robot is to traverse a series of offices emp- 
tying bins (and perhaps vacuuming the carpets.). It turns out that even this seemingly 
simple task is made difficult by the uncertainty about the location of furniture, people, 
rubbish bins etc. To navigate around offices populated by people requires more sophisti- 
cated sensors. Perhaps, as Brooks suggests, no sophisticated internal representations of 
the environment are required but still there is a strong requirement to be able to sense 
the complex dynamic world [13].   Throughout the robot world there are examples that 
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reinforce the view that there are trade-offs between the design of the environment and 
the perception systems that drive the robots. In complex systems where little design 
control can be exerted over the environment the demands on robot perception are high. 
Robocup [98] is a very good example of a system in which, even though some design con- 
trol is exerted over the environment, the robots still require very sophisticated perceptual 
apparatus. 

Just as there are similarities between agent communication and intention recognition so 
are there similarities with machine vision. The lessons from machine vision for intention 
recognition are obvious. Design the environment and perception is simplified. Just as 
colored poles surround a Robocup field to help the robots localise imagine the prospect of 
robots that changed color from moment to moment as their intention changed. Though this 
is really just another form of communication, in virtual worlds the prospect of engineering 
perceivable artifacts into every aspect of the environment offers different possibilities for 
assisting intention recognition. 

If there is little or no design control over the elements of the system other than the 
agent, then there is clearly a need to provide the agent with the facility to deal with 
the unconstrained complexities of a dynamic world. In terms of intention recognition 
this might require a module akin to a robotic vision system that takes sensory data from 
the world and performs some complex mapping onto symbols that are in the form nec- 
essary for agent reasoning. The robotic vision system typically processes video images 
into named, attributed objects. Depending upon the specific domain intention recognition 
might process object-attribute information and convert it into some symbolic represen- 
tation of intention. The sensory data and the resultant information is different but the 
process is conceptually similar. 

Difficulties are also apparent in defining the boundary of perception and cognition. 
Chalmers at. al. deal with this via their theory of high level perception that provides a 
representation of the processing that deals with the abstraction, fusion, and recognition 
based perceptual tasks. 

"High-level perception—the process of making sense of complex data at an abstract, 
conceptual level—is fundamental to human cognition. Through high-level perception, 
chaotic environmental stimuli are organised into the mental representations that are 
used throughout cognitive processing. Much work in traditional artificial intelligence 
has ignored the process of high-level perception, by starting with hand coded representations. "— 
Chalmers, French and Hofstadter [26] 

Elsewhere too the limitations caused by the symbol binding problem for purely sym- 
bolic reasoning systems has addressed with the obvious conclusion that human (and possi- 
bly agents) require some form of sub-symbolic processing occurring in the interface between 
the environment and high-level cognitive activity. 

"A related problem, for purely symbolic approaches is that sensory information about 
the physical world is usually thought of as numerical. Thus there must be a layer 
of non-symbolic computation between the real world and the realm of pure symbols. 
Neither the theory or the practice of symbolic AI argues against the existence of such 
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a layer but its existence does open up the possibility that some substantial part of 
cognition occurs therein without ever reaching the symbolic level."—Michael Jordan 
and Stuart Russell   [88] 

2.5.2    Explicit Representation 

This thesis will argue strongly that an explicit and abstract representation of inten- 
tion is a necessary and useful precursor to implementing intention recognition because it 
simplifies the process of design. In taking this stance this thesis is aligned with those 
agent and AI researchers who advocate agent systems that explicitly represent particular 
aspects of intelligence: 

"It is not clear how an agent might undertake intention recognition without some ex- 
plicit representation of intention."—Mike Wooldridge Presentation to the Melbourne 
University Agent Lab, 2000 

Yet Rodney Brooks and other criticise mainstream AI for abstracting away important 
aspects of intelligence and overly simplifying the problem: 

"The only input to most AI programs is a restricted set of simple assertions deduced 
from the real data by humans. The problems of recognition, spatial understanding, 
dealing with sensor noise, partial models etc. are all relegated to the realm of input 
black boxes."—Rodney Brooks  [13] 

This is a manifestation, albeit in a modified form, of the connectionist versus sym- 
bolicist argument that has split AI in the past [120]. Brooks prefers systems that have 
no explicit representation of the environment (much less intention) but still manage to 
generate intelligent behaviour. 

"When we examine very simple level intelligence we find that explicit representations 
and models of the world simply get in the way. It turns out to be better to use the 
world as its own model.  "—Rodney Brooks  [13] 

Reconciling these two seemingly different views is unnecessary because there are fun- 
damental differences in the types of activities with which Brooks and others are concerned 
and those addressed by this thesis. The ultimate aim of this thesis is to contribute to the 
general understanding of the means by which intelligent behaviour might be engineered, 
a goal not dissimilar from Brooks and his robot development but Brooks takes the view 
that: 

"We must iteratively build up the capabilities of intelligent systems, having complete 
systems at each step of the way."—Rodney Brooks   [13] 
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Furthermore Brooks is primarily interested in systems that function in the real world 
(i.e. robots) whereas the predominance of agents operate in virtual worlds where the 
environment is itself simplified and abstract. 

This thesis is concerned primarily with modelling intelligent behaviour. Taking a soft- 
ware engineering stance almost presupposes simplification and abstraction of the problem 
to support design. The task of software engineering is to manage the complexity of software 
systems, and abstraction is one of the tools available to the engineer. 

So what Brooks sees as a deficit, simplifying the problem by abstracting the details, 
is one of the important messages of this thesis and so this thesis is about modelling and 
design rather than implementation. Indeed, Brooks' robots are not designed in software 
engineering sense but are constructed over time, evolving their intelligence iteratively as 
a mechanical whole situated in an environment. 

Certainly this thesis allows for the modelling of systems where the intending agent has 
no accessible internal representation of intent. But if there is no representation of intention 
in the recognising agent then then there is surely no intention recognition. At best there 
is the appearance of intention recognition but at design time, if intention recognition is 
required then those intentions must be described. 

So the argument for an explicit representation is threefold: 

1. Explicit representations support design. Abstract simplified and explicit representa- 
tions are useful in modelling and designing agent systems, even if the implementation 
fails to maintain those representations. Without explicit representations to guide the 
design the intelligence is an emergent property of the system. In other words, mak- 
ing appropriate design choices about a system to implement intelligent behaviours 
requires explicit representations of the important parameters that influence the de- 
sign. 

2. Intention recognition is too sophisticated a behaviour to arise as an emergent prop- 
erty of a system. Without an explicit representation of intention in the recognising 
agent the task of effectively generating intention recognition is problematic at best. 
Brooks' robots do exhibit intelligent behaviour, but that behaviour is ascribed by 
the observer and does not exist as an accessible description inside the robot. Fur- 
ther more Brooks himself classifies the behaviours with which he is concerned as 
"simple", a label which is inappropriate for intention recognition. Ascribing intent 
to a robot is plausible but it seems less likely that that an observer would ascribe 
intention recognition to a computational entity. 

3. In virtual worlds the environment can itself sustain explicit representations of sim- 
plified abstract concepts that can support intelligent behaviours. Brooks' point has 
validity for the construction of robots that must operate in the continuous complex- 
ity of the real world but is less valid for the construction of AI that live in virtual 
environments. In virtual worlds the environment is (almost always) simpler than the 
real world and can be augmented, abstracted, and adapted to better suit the agent 
and to support the generation of the abstract simple concepts with which the agent 
reasons. 
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2.5.3    Hybrid Systems 

Robotics has, of necessity, patched dissimilar technologies together for decades. From 
a purists perspective robotics might seem to be less about a search for good old fashioned 
AI and more about tinkering with electrical engineering but the lessons that have been 
learned in robotics can inform some aspects of agent development. The emerging view of 
agents as embodied, situated, and social shares more in common with robots than it does 
with the monolithic rule and knowledge based systems that once characterised AI. The 
differences between the types of processes normally categorised as perception and cognition 
suggest that (wherever the boundaries are drawn) different implementation technologies 
are likely to be required if it is necessary to maintain links to human intelligence. Minsky's 
Society of Mind [119] develops a view of intelligence as a grouping of coordinating agents 
that together provide intelligence. 

The increasing demands being placed upon intelligent agents as the technologies mature 
seems to suggest that future AI (or at least parts of it) will require the assembly of hybrid 
systems from a variety of technologies. It was true when Minksy wrote of it in 1991 and 

it is true now. 

"In the 1960s and 1970s, students frequently asked, "Which kind of representation is 
best," and I usually replied that we 'd need more research before answering that. But 
now I would give a different reply: "To solve really hard problems, we '11 have to use 
several different representations." [...] we must develop systems that combine the 
expressiveness and procedural versatility of symbolic systems with the fuzziness and 
adaptiveness of connectionist representations.  "—Marvin Minsky [120] 

A similar sentiment is expressed by Clancey in highlighting the different character of 
activities generally classified as intelligent. 

"Put another way, by ignoring consciousness, researchers have swept under the carpet 
those aspects of intelligence that cognitive modelling fails to explain. Reasoning is 
inherently a conscious activity; what occurs within cycles, subconsciously, is not more 
direct manipulation, but a process of a distinctly different character, involving different 
modalities, not just verbal, which allows describing to occur and gives it the power it 
has to change our behaviour."—William Clancey [30] 

The reliance on a single technology or unified approach seems ill conceived. The 
solution to developing computational representations of intelligent behaviours is to develop 
a variety of approaches that allow technologies to be adopted on an as needs basis. 

In a very practical sense this view is being adopted by developers of games that use 
agent technologies. 

"Of the concepts I've presented in this article, there are three features from. Black and 
White20 that I expect will become increasingly commonplace in game AI in the com- 
ing years. First, agents' minds will come to include both symbolic and connectionist 
representations, happily coexisting in one unified architecture."—Richard Evans [46] 

20Black and White is a computer game released by Lionhead Studios that uses BDI architectures for its 
characters. 
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2.5.4    Pattern Matching and CLARET 

Pattern matching techniques are used in Chapter 7 to implement part of the intention 
recognition system of an agent. The particular algorithm, CLARET [137], has been used in 
a number of domains and is strongly suggested for this application by virtue of its capacity 
to deal with spatio-temporal relationships and to produce successful matches as soon as 
the choices are disambiguated. This allows the results to be incorporated into an agent 
with the capacity recognise the behaviour of another prior to its completion. CLARET 
structures its examples hierarchically allowing advanced applications to build sets of nested 
behaviours to be recognised and announce the successful discovery of these as recognition 
progresses. This has definite analogies to intention recognition systems that maintain 
hypotheses in the form of sets of plan instances. The difference with CLARET is that the 
matching is done of the basis of learned examples that are partitioned automatically by 
the algorithm. In the CLARET algorithm an unknown segmented and labelled trajectory 
case is presented to the system together with examples of known trajectories using a 
simple polygonal approximation technique. Relationships between trajectory segments 
are extracted and parameters defining their relationships are calculated. Relational rules 
are generated that explicitly depict relationships between states. Matching techniques 
relate task descriptions to the available data. A parser is then used for conversion of 
events matched using these rules into descriptions that are consistent with the syntax of 
the events and their relationships. The system uses inexact (approximate) matching and 
a Bayesian probability network to negotiate between alternative hypothesis, and thus the 
rules are transferable to other airports and under variable conditions. 

2.6    Software Engineering 

The previous section stressed the importance of environments to agents and provided 
examples of the manner in which careful design to reduce the load on an agent's perception 
related tasks. The design of agent software should draw on the experiences of the software 
engineering body of practice. Too often agent research forgets or ignores the lessons of 
software engineering with the result that solutions are tailored to narrow or toy domains 
and are consequently difficult to reapply. 

There are a number of fertile areas in the state of the practice of software engineering. 
With the aim of this thesis being a means of modelling intention recognition in agent 
systems some of the more obvious topics include: design patterns as an approach to reuse; 
software modelling languages such as the UML; and proposed agent oriented software 
engineering methodologies. Each of these areas is covered in the following sections. 

2.6.1    Design Patterns 

Design patterns are abstractions from instances of design forms that reoccur in specific 
software development. Typically they are "geared toward solving problems in design" [154] 
and therefore simplifying the implementation. 

A high-level definition of a pattern is provided by the Patterns Web Page: 
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"A pattern is a nam.ed nugget of insight that conveys the essence of a proven solution 
to a recurring problem within a certain context amidst competing concerns. Patterns 
are usually concerned with some kind of architecture or organization of constituent 
parts to produce a greater whole."— [134] 

A working definition that gives greater insight into a pattern's composition is: 

"Each, pattern is a three-part rule, which expresses a relation between a certain, con- 
text, a certain system, of forces which occurs repeatedly in that context, and a certain 
software configuration which allows these forces to resolve themselves."—Gabriel [52] 

Once a collection of related patterns is available and experience with their use is 
achieved it is possible to develop a Pattern Language. Again from the Patterns Home 
Page [134] a 'Pattern Language' is 

"a collection of patterns forming a vocabulary for understanding and communicating 
ideas. Such a collection may be skillfully woven together into a cohesive 'whole' that 
reveals the inherent structures and relationships of its constituent parts toward fulfilling 
a shared objective. If a pattern is a recurring solution to a problem in a context given by 
some forces, then a pattern language is a collective of such solutions which, at every 
level of scale, work together to resolve a complex problem, into an orderly solution 
according to a pre-defined goal."—Patterns Web Page [134] 

With respect to productivity, patterns are one of the more significant ideas to be 
introduced to software engineering. Specifically they support the cataloguing of knowledge 
about successfully employed solutions to well understood problems. In doing so, they 
have the capacity to short-circuit the search for answers to a software design question and 
present the engineer with range of options suitable for the task. A set of agent software 
design patterns for modelling intention recognition is provided in Chapter 6. 

Cognitive patterns are an extension of standard software design patterns that allow 
modelling of human problem solving in a software development environment. 

"As systems become more complex, the human limitations to comprehending system 
requirements become more evident. Since we cannot develop appropriate solutions if we 
do not understand the problem, human understanding is the key ingredient. Cognitive 
Patterns addresses this central issue by providing techniques for system specification 
that are based on our human facility for thinking and reasoning. As such it does not 
model system requirements in terms of programming languages and platforms. Instead, 
it models the way reality is understood by people."—James Odell [55] 

The use of cognitive patterns has not been widespread in practice, but the concept of 
providing a modelling framework based on human reasoning that is useful for system spec- 
ification is powerful. The look and feel of the cognitive patterns literature [55] is adopted 
for expressing the architectures of the approaches to intention recognition proposed in 
Chapter 5. 
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2.6.1.1    Agent Patterns 

A clear and present need for documented agent patterns exists [100]. Patterns may 
manifest initially as sample code in a variety of agent languages, or as unstructured de- 
scriptions of solutions to problems, but as time passes there will be increasing demand for 
the tools and practices that have proven useful in other software paradigms to be adapted 
or adopted for use developing agent systems. Patterns have proved to be a valuable contri- 
bution to productivity in software development generally. The importance of architectural 
design in agent systems (indeed any distributed system) suggests that there is every reason 
to believe that agent patterns will result in similar advantages. 

Design patterns have been under-utilised for agent systems. Experience with agent 
software patterns is limited by the recent advent of agency as a software paradigm and 
the scarcity of documentation describing agent systems at the architectural level. Some 
notable exceptions are the work by Kendall et. al [95], Deugo et. al. [40], Meira et. al. [34], 
Lind [108] and Findler et. al. [111]. In each of these cases the authors present agent designs 
in the form of a patterns catalog and although the approach to documentation differs 
in each case they are all generally consistent with the mainstream software engineering 
patterns literature. 

Just as object oriented patterns describe either relationships between objects or the 
internal structure of objects so to can agent patterns describe relationships between agents 
and their environments or the internal structural details of the agent. Design patterns for 
agent systems will include particular agent architectures, cognitive models, and, in the case 
of multi-agent systems, teams and social structures. Chapter 6 deals with the provision of 
a set of design patterns concerned with the modelling of a particular functionality within 
an agent system—intention recognition. 

There are some fundamental differences between agent oriented systems and object- 
oriented systems that influence the presentation and content of patterns. Foremost amongst 
these is the relatively higher level of abstraction required by an agent pattern. Many 
object-oriented patterns are specified in terms of concrete classes. In some cases the pat- 
terns are detailed enough to approach source-code templates and are described with sample 
code. Agent system developers will benefit more from architectural patterns that capture 
the interactions between agents and environments and among the agents as they collab- 
orate. Detailed source-code level patterns (referred to in the literature as programming 
idioms) that, specify the designs of internal components of the agent are useful but will 
have limited scope for reuse due to the large differences between agent theories, architec- 
tures and languages. Design patterns strive for language independence but the fact that 
agent languages exhibit more diversity than the comparatively uniform object-oriented 
languages has implications for the provision of agent design patterns. This, and the more 
abstract nature of agents, requires more abstract design patterns than are observed in 
object-oriented analysis and design. Design level descriptions, critically documented and 
analysed, are a more valuable resource for the agent system developer than sample source 
code 21. 

'If agent oriented software matures to the same level as OO and there is a rationalisation of languages 
with a standard set of concepts then source code will become increasingly useful. 
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2.6.2    The UML and the AUML 

The UML is an appropriate tool for modelling agent systems. It is extensible and 
supports much of the modelling that is required. Where it is deficient there are efforts 
underway to address the issues. The deficiencies are small compared to the advantages it 

offers. 

Throughout this thesis a number of extensions, modifications, or adaptations of the 
UML were introduced to cater for specific agent development modelling requirements. 
This Chapter gathers those together not to provide an authoritative or complete agent 
modelling language but at least a thoughtfully composed set that have proved useful for 
the purposes of the analysis and design methodologies. 

Attempts have been made to maintain compatibility with the general development of 
the UML and, in particular, the AUML. 

The UML and associated methodologies [102] are rapidly becoming industry standards 
for the development of object oriented systems. Unsurprisingly, this popularity has led 
to the development of agent oriented extensions. Foremost of these is the Agent UML 
(AUML) [132]. Experiences with the development of military simulation has echoed these 
wider international trends. In systems such as SWARMM and BattleModel only a small 
percentage of the development effort is agent related. Much of the system design effort 
is focused on aspects that have little or no relationship to agency and can be tackled 
with traditional software engineering techniques. The Rational Unified Process, the UML, 
and standard software engineering tools have proved the worth in the development of 
the simulation infrastructure and the 00 aspects of the system. Whilst techniques for 
modelling, designing, and specifying the agents are immature preliminary experience with 
the UML for requirements specification [73] and design [136] has proved promising. There 
is significant management, training, and infrastructure advantage in maintaining a single 
tool set for agent and object oriented components of a system. 

2.6.3    Agent Oriented Software Engineering 

The agent oriented software engineering is almost as diverse as that dealing with other 
aspects of agency. Broadly there are two camps: those attempting to reapply (perhaps with 
substantial modification) successful object oriented approaches [17, 131, 132, 73, 136, 38]; 
and those attempting to develop agent oriented techniques (often these are associated with 
a particular agent theory, architecture or language) [33, 94, 47, 8, 185, 182]. Neither group 
dominates the literature and experiences with large scale agent development are so rare as 
to make empirical evidence statistically insignificant. It seems likely that the future will 
see some compromise that satisfies the needs of most. Juan, Sterling and Winikoff [89] 
have proposed a modelling approach that allows a core agent model to be extended to 
meet the needs of a variety of users. 

There are several good summaries of the agent oriented software engineering litera- 
ture [189, 187] that provide detail in areas outside the scope of this thesis. 

Software engineering has been reported by several researchers as one of the significant 
remaining challenges facing the agent community [123] and if the lessons from the 00 
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community are valued it seems that many of these challenges will not be addressed until 
more broadly based experience with the construction of agent systems is published. In the 
interim those constructing agent system in an industrial setting make use of the tools that 
they have at their disposal. It is precisely because of this that the UML (and its agent 
oriented sibling) the AUML receive so much attention in agent software engineering circles. 
The agent based software engineering workshops at ICSE (International Conference on 
Software Engineering) or AAMAS (The International Conference on Autonomous Agents 
and Multi Agent Systems) see many examples of agent extensions to UML. 

In order to explore the current status of agent oriented software engineering and to 
move some of the way toward predicting its future, comparisons will be drawn with the 
development of object oriented technologies and methodologies. Whilst it is by no means 
clear that these comparisons are valid they at least off some insights into some of the 
issues currently waiting to be addressed by agent practitioners and some possibilities for 
the future. 

This thesis ascribes to the view expressed by Jennings [85] that agent based software 
engineering will become mainstream. This is due to it being the "natural next step" 
and being an appropriate model for developing the open highly networked systems that 
are starting to dominate the software engineering landscape. There is a third point that 
Jennings does not make, though it is related his first. Not only are agent the natural 
next step, but they are just plain natural. They provide software engineers with a useful 
set of concepts for managing system complexity but even more interestingly they provide 
the non-expert with some insights into complex system development in a way that object 
systems do not. Some researchers have reported the benefit of exactly this property of 
agency [74]. If the potential of this is realised it may lead to a suite of technologies that 
help to bridge the gap between customer and developer. 

Object oriented languages, ADA, JAVA, C++, SmallTalk, etc. have much the same 
object oriented language features. This allows design techniques to be applicable to more 
than one languages. Indeed it is considered good practice in the 00 community to produce 
designs that are as language-independent as possible. Unfortunately for the agent commu- 
nity the diversity of agent languages makes language independent designs an impossible 
goal. Efforts can be taken to keep the software engineering process language independent 
as long as possible but a point will be reached, much earlier than in 00, where a com- 
mitment to a specific delivery architecture will greatly influence the design. Indeed, it is 
not altogether clear that this agent diversity does not impinge upon the analysis phase 
suggesting that the way we analyse a system might be, rightly, influenced by the agent 
langauge. 

2.7    Ontologies 

From philosophy comes a definition of ontology as: 

"that department of the science of metaphysics which investigates and explains the 
nature and essential properties and relations of all beings, as such, or the principles 
and causes of being."—Websters Dictionary  [23] 
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Philosophers regard ontology as the science that seeks to understand what it is that 
actually exists, what relationships hold between that which exists and what it is that cause 

existence. 

Unsurprisingly philosophical views of ontology differ widely and there are often am- 
biguities and overlaps between what is regarded as ontology and what is regarded as 
epistemology. The distinction being broadly that ontology is concerned with what is and 
epistemology concerned with what is known. In the detail of particular views lies the very 
essence of much of philosophy and how those views have shaped science over the millennia. 

Ontologies as they pertain to this thesis will define the knowledge level concepts that 
are useful in representing agent knowledge. Accepted definitions as used by AI practi- 
tioners where ontologies refer to theories about the properties and relationships that exist 
between entities in a system. 

"An ontology is an explicit specification of a conceptualization. The term is borrowed 
from philosophy, where an Ontology is a systematic account of Existence. For AI sys- 
tems, what "exists" is that which can be represented. When the knowledge of a domain 
is represented in a declarative formalism, the set of objects that can be represented is 
called the universe of discourse. This set of objects, and the describable relationships 
among them, are reflected in the representational vocabulary with which a knowledge- 
based program represents knowledge. Thus, in the context of AI, we can describe the 
ontology of a program by defining a set of representational terms. In such an ontology, 
definitions associate the names of entities in the universe of discourse (e.g., classes, 
relations, functions, or other objects) with human-readable text describing what the 
names mean, and formal axioms that constrain the interpretation and well-formed use 
of these terms. Formally, an ontology is the statement of a logical theory."—Gruber 

[63] 

Ontologies are useful for information exchange and inter-agent communication [49] 
and for assisting in the specification of information systems [67], and for broader knowl- 
edge management activities that are not necessarily software related [5]. Uschold [175] 
describes three purposes to which ontologies are put: communication between people, 
inter-operability among systems, and for systems engineering (and it is the system speci- 
fication aspect of ontologies with which this thesis is concerned). In use, practitioners do 
not require an ontological commitment by an agent actually result in associated symbolic 
reasoning. The agent must implement an interface that allows it to communicate and 
interact with other agents as if it does. 

"We use common ontologies to describe ontological commitments for a set of agents so 
that they can communicate about a domain of discourse without necessarily operating 
on a globally shared theory. We say that an agent commits to an ontology if its 
observable actions are consistent with the definitions in the ontology. The idea of 
ontological commitments is based on the Knowledge-Level perspective (Newell, 1982) 
. The Knowledge Level is a level of description of the knowledge of an agent that is 
independent of the symbol-level representation used internally by the agent. Knowledge 
is attributed to agents by observing their actions; an agent "knows" something if it 
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acts as if it had the information and is acting rationally to achieve its goals. The 
"actions" of agents—including knowledge base servers and knowledge-based systems- 
can be seen through a tell and ask functional interface (Levesque, 1984) , where a 
client interacts with an agent by making logical assertions (tell), and posing queries 
(ask).""—Gruber [63] 

This echoes the distinction that has been made between ascription and description for 
agency and intentionality. In much the same way Gruber acknowledges that ontologies do 
not require an internal representation of the knowledge concepts, only that their behaviour 
is consistent with the ascription of those knowledge concepts. 

But Gruber also makes the point that: 

"as a software engineering construct ontologies play the role of a coupling interface 
between knowledge bases..."—Gruber [62] 

This highlights the important role that ontologies play in the specification of system 
interfaces and that they can provide system-level descriptions of the design. Gruber goes on 
to provide design criteria for the assessment of ontologies. Clarity, coherence, extendability, 
minimal encoding bias, minimal ontological commitment. Many agent developers use 
ontologies as knowledge-level descriptions of the important concepts manipulated by the 
agent [54, 12]. In this sense they are design-level descriptions of agent functioning. 

The proliferation of research into ontologies related to agent system development is 
strongly related to the abstract nature of agent reasoning and the desire to create com- 
putational entities that reason and communicate with higher orders of data. Wiederhold 
makes the point that: 

"Data from multiple sources will often not match in terms of naming, scope, granu- 
larity of abstraction, temporal basis, or domain definition."—Weiderhold [180] 

and that this mismatch is exacerbated as reasoning is conducted at more abstract 
levels: 

"... the information required to initiate action, will be hidden in ever-larger volumes 
of detail, scrollable on ever larger screens, in ever smaller fonts. In essence the gap 
between data and information will be wider than it is now." "—Weiderhold [180] 

There are two important aspect of Wiederhold's discussion of ontologies. First is that 
agents often commit to different ontologies and that a process of translating ontologies is 
required. Second is that the knowledge concepts that the user or agent requires, and that 
should be represented in the ontology, are not always available and that some process for 
translating from the system level data into the higher order concepts represented in the 
ontology is required. 

Regardless of the explicitness of the agent ontology there is a need for methods to 
assist the engineer in constructing ontologies. Several authors have proposed approaches 
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for addressing a clear need for a systematic approach to the development of ontologies. 
Uschold has the aim of developing a unified methodological approach to building ontologies 

and comments that: 

"The main barrier to the production of such a coherent unified framework embrac- 
ing all of these techniques and methods for building ontologies is that there is no 
clear indication of how general the individual techniques and methods reported to date 

are."—Uschold [175] 

Mariano [58] and others have also indicated the need for systematic approaches to 
the construction of ontologies and Menzies et. al. describe automated approaches for 
evaluating the utility of ontologies [118]. Clearly there is a need for further insights into 
the design and use of ontologies in agent systems. 

2.8    Summary 

The background literature has indicated that the following areas are of primary im- 
portance to a consideration of models of intention recognition: 

1. existing approaches to intention recognition focus on adding functionality to the 
agent and tend to ignore other alternatives; 

2. although perception is widely considered a fundamental property of agency there 
has been relatively little work done to more accurately specify the concept; 

3. techniques are required to design ontologies for multi-agent system; 

4. many systems that might require intelligent agents with the capacity for intention 
recognition will be constrained by performance requirements; 

5. a range of solutions, particularly those which cater flexibly for hybrid technologies, 
are required. 

To address these issues in the context of the aim this thesis draws together several key 
research threads: 

1. the work of Rao and Murray [151], and later Rao [147, 151], Rao and Georgeff [149] 
and Busetta and Tidhar [19] that resulted in an agent based implementation of 
intention recognition that uses a reactive recogniser as a component of agent reason- 
ing. This research provides a strong example of the traditional approach to intention 
recognition applied to a relevant domain. Similar examples are provided by Kaminka 
and Pynadath [144] and others [60]; 

2. the situated cognition literature particularly Clancey [30] and the ecological psychol- 
ogy of Gibson [57]. In particular Gibson's theories of ecological visual perception, and 
the idea that higher order structures are directly accessible in the environment [56] 
and the further utilisation of those ideas for design proposed by Norman et. al. [128]; 
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3. labelled environments and the idea of designing the environment to cater for agent 
perception. A recurring theme in games [81, 46], the design of web pages [163, 28], 
and even RoboCup [98]; 

4. the ontology literature, particularly Gruber [63, 64] and Wiederhold [180]; 

5. the intentional stance and the work on ascribed intentionality of Dennett [39] and 
Bratman [10]; 

6. the work of Pearce [137] and Pearce, Caelli, and Goss [138] in pattern matching, 
particularly as it pertains to the classification and recognition of complex human 
behaviour [139]; 

7. the software engineering literature that pertains to patterns [53, 18] and the re- 
lated literature that has emerged from the KADS community dealing with cognitive 
patterns [55]; 

8. the work of Heinze et. al. in the development of intelligent agents for military 
simulations [78, 74, 73, 71, 169]. 

Together they help to shape and guide the research by focussing research in particular 
directions, by dictating assumptions that constrain the thesis and by providing insights 
into the relevance of particular approaches. Ultimately this thesis aims to provide an 
approach to modelling intention recognition whilst at the same time addressing some of 
the gaps that exist in the state of the practice of the engineering of intelligent agent 
systems. 
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Chapter 3 

Perception and Agent Design 

"This is a radical hypothesis, for it implies that 'values' and 'meanings' of things in 
the environment can be directly perceived."—J. J. Gibson The Ecological Approach to 
Visual Perception 

"Do I have a big neon sign above me that reads 'Slayer. Come on attack me' or 
something?"—Buffy the Vampire Slayer The Reborn Episode 

This Chapter is composed of four sections related to the role that models of perception 
can play in agent system design. These sections combine with Chapter 4 to provide the 
basis for the intention recognition modelling framework that is described in Chapter 5. 

The first, Section 3.1 explains the importance of an explicit model of perception in 
designing agent systems. Central to the model of perception presented is the assumption 
that an agent is distinguished from other types of software by the abstract (knowledge 
level) data it manipulates. Perception is presented as the means by which an agent con- 
verts between the data available in its environment and the more abstract representations 
it requires. The situated nature of agents, and importance of the environments they in- 
habit, is often ignored or understated by the designers of agent systems. Their focus is 
inevitably agent-centric, often isolating the agent from the system it will inhabit. Failing 
to adequately consider the environment provides little opportunity for the design process 
to take advantage of, or even analyse properly, the design interplay that can exist between 
agent and environment. Implementing perception-related agent behaviours22 is simpli- 
fied if the environment is considered during the design process and an explicit model of 
perception is available to mediate between the conflicting requirements of the agents to 
be presented with higher order abstract data and the limitations of the environment in 
providing them. 

Section 3.2 extends a radical theory of human perception—Gibson's Theory of Direct 
Visual Perception [57]—to account for human intention recognition. Gibson proposes that 
human visual perception has evolved to allow certain invariant properties of the environ- 
ment to be accessed directly. By Gibson's account, vision involves the direct perception of 
affordances. Or rather, that the mutually dependant nature of animals and environments 

22Intention recognition is an example of an agent behavior that relies heavily on perception. Other such 
activities might include situation awareness and navigation. 
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has led to invariants such as affordance being present in the structures of the environment, 
and it is these structures that can be directly perceived. Gibson's theory was an early 
contribution to the study of situated cognition—one of the influences that moved some 
areas of AI research into the study of intelligent agents. Differences between Gibson's 
view of human perception and the accepted theories of mainstream psychology [177] are 
reflected in the existing approaches to modelling intention recognition and those suggested 
in this thesis. When combined with the model of perception presented in Section 3.1 the 
extensions to Gibson's theories have implications for modelling intention recognition and 
suggest alternative architectures and technologies. 

Section 3.3 continues the focus on the importance of the environment in the design 
of agent systems. Five examples of environments that have been engineered to support 
perception related agent activities are provided. Adding labels, structures and meta-data 
to environments to assist agents with perception is usually the result of some ad-hoc 
process associated with overcoming integration problems and not some reasoned software 
design process. The design choices implicit in each of these examples can be elegantly 
expressed in terms of an explicit model of perception. This section draws out important 
lessons that provide yet another degree of freedom for modelling perception and intention 
recognition. The appropriate labelling of an environment can greatly ease the task of 
providing an agent with perception related behaviours. An explicit model of perception 
is useful in supporting the design process that determines what constitutes 'appropriate 
labelling'. 

There is an intuitive link between perception and intention recognition. Intention 
recognition depends upon perceiving the results of the actions of other agents in the en- 
vironment in order to recognise their intent. When introducing this thesis it was noted 
that intention recognition is a substitute for communication. This suggests a relationship 
between perception and communication, at least as it pertains to intention recognition 
and possibly in a broader context. Section 3.4 argues that perception subsumes com- 
munication, at least as it pertains to modelling intention recognition. Treating agent 
communication as just another form of perceptual input has design benefits for modelling 
agent behaviours like intention recognition and from a software engineering perspective 
there are advantages in unifying the input into an agent in a single place. These bene- 
fits are dealt with in Section 3.4 together with an critical assessment of this approach. 
For some agent functionalities there are benefits in treating communication as something 
which is perceived. The link between perception and communication is extended further 
in Chapter 4 where ontologies are described in the context of agent design. 

The results of this Chapter are summarised in Section 3.5 and even more succinctly in 
Figure 3.10. When accompanied by the insights of Chapter 4 they provide the basis for 
six models of intention recognition presented in Chapter 5. In Section 3.5.2 the first steps 
toward a design methodology that might incorporate an explicit model of perception is 
presented. Though the development of methodology is beyond the scope of this thesis, the 
brief account presented helps to provide insights into the advantages an explicit model of 
perception offers for the design of agent systems. 
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Figure 3.1: Perception is the process by which the data available in the environment is 
processed into the form required by the agent. What is perceived depends upon what is 
there and in systems where the environment is designable, it is possible to make these 
structures and events agent-friendly. 

3.1    Exposing the Abstraction Gap 

Recalling the definition given in Chapter 1, perception is the process by which an 
agent becomes aware of environmental events and structures [15]. Perception allows an 
agent to sense and make sense of its environment, a key pre-requisite to intelligent, au- 
tonomous behaviour. From a software design perspective, perception is a model of an 
interface between the agent and the environment. This interface includes the sensing of 
the environment and subsequent processing into the higher order concepts required by the 
agent (See Figure 3.1). Maintaining an explicit representation of the interface between 
the agent and the environment provides the software engineer with a means of arbitrating 
various requirements. An explicit model of the interface is a necessity in agent systems 
due to the differences .that can exist between intelligent agents and other types of soft- 
ware. These differences exist at design time with the types of concepts, representations 
and processes that differentiate agents from other types of software and also at run time 
where the interface links dissimilar software. 

Most agent models do not include a distinct perception module, preferring to incorpo- 
rate the complexities of information abstraction and data interpretation into the general 
functioning of the agent itself, or ignoring the issue of perception entirely23. If perception 
is included within the agent model it is often skinny: little more than a placeholder for the 
sensory data24 that enters an agent. Any processing of the data is expected to lie within 
the agent25. 

23For example the BDI model makes no mention of perception [149]. It provides a framework for 
implementing practical reasoning but provides no support for reasoning about or modelling perception or 
anything more than the most rudimentary epistemic reasoning. 

24Adopting the terminology of psychology, sensing will be defined as a part of the perception process 
that acquires data from the environment but does not meaningfully alter that data: the simple detection 
and transmission of the lowest-order data in the environment. 

25An obvious exception is robotics where the task of perceiving the real-world is usually delegated to a 
machine vision sub-system that feeds a symbolic representation of the environment to a decision making 
module. 
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Human perception is the means by which the world is sensed and conceptualised 
through a process of abstracting the relevant features, relationships and properties from 
the rich array of data that bombards the senses. The metaphor is suitable for applica- 
tion to agent systems where the gap between the agent and the environment is correctly 
characterised as an abstraction gap. 

Most software does not share an agent's level of abstraction. In defining 'agency' 
in Chapter 1 it was noted that operating at the 'knowledge level' is a distinguishing 
property of intelligent agents. When agents are added to software environments that 
are not agent-oriented26 there is an inevitable level-of-abstraction gap at the interface. 
Agents are expected to reason in high-level abstract ways (often as surrogates for human 
reasoning) but at the same time must inhabit environments filled with low level data 
that must be somehow sensed, perceived and abstracted. Perception is an appropriate 
model for managing the abstraction of data between non-agent environments and agents 
that inhabit them. Looked at in this fashion, perception is the model that manages the 
abstraction, translation, interpretation, and conversion of data from the environment into 
a form appropriate for the agent. When an agent is required to exhibit behaviors as 
sophisticated as intention recognition the abstraction gap is likely to be wide. 

Example 

A preview of the intelligent agent system that is described in Chapter 7 provides an 
example of the role that an explicit model of perception can play during design. 

Consider the development of flight simulation software that will include an intelligent 
agent as a pilot to fly an aircraft around a virtual world. Suppose that the software 
that simulates the aircraft engine and fuel-usage is implemented in an object-oriented 
C++ module. At every time step (say 10 times per second) this module recalculates the 
amount of fuel remaining, measured in kilograms. 

An agent is to be added to the flight simulator to pilot the aircraft. The agent must 
access some representation of the amount of fuel remaining in order that it make sensible 
decisions about when and where to land the aircraft. But what representation should the 
agent manipulate? 

Human pilots typically do not use kilograms to measure fuel, they use pounds, so at 
the very least a units conversion is required [167]. There are many other possibilities 
however. Pilots only occasionally need highly accurate representations of the amount of 
fuel left. Commonly pilots would describe their fuel level with phrases like 'full', 'about 
half, 'plenty', 'enough for another half hour', or 'nearly empty'. The difficulty with 
concepts like 'plenty' is not only that they are inherently fuzzy but also that they are 
highly contextual. 'Plenty' is not a fixed amount of fuel but depends on what the pilot 
intends to do. A pilot about to land has a different notion of plenty than one about to 
take-off. 

When looking at the fuel gauges pilot relate the amount of fuel remaining to their 
current activities and, almost subconsciously determine how the amount of fuel remaining 
relates. 

The agent system designer must determine how knowledge of the fuel state arises in 

Most intelligent agent development involve the post-hoc addition of agents to extant non-agent systems. 
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the agent and how the data from the aircraft engine model is mapped into the higher 
order abstract knowledge required by the agent. If it was necessary to maintain a close 
correspondence between the agent knowledge and the knowledge captured from real pilots 
then it would be sensible for the agent to manipulate terms like 'plenty' and some mapping 
would be required. If there is a requirement that the agent operate with highly accurate 
numerical representations of the fuel remaining (as might be the case if the agent were more 
in the spirit of an 'autopilot') the mapping of data between into the agent is simplified. 
Whatever the requirements, there are a number of possible solutions. The type of data 
required by the agent, the perception model that delivers it, and the environment can 
all be modified to facilitate the process. Trading-off the design choices and making the 
appropriate decisions is facilitated by an explicit model of perception. 

3.1.1    Sources of Insight 

This chapter, indeed the entire thesis, seeks engineering solutions to modelling agent 
systems: the pragmatics of software engineering are taken as the yardsticks of the quality 
of the solution. Insight is sought in both the practicalities of experience with deployed 
systems and in the relative scientific literature. The solutions presented have both en- 
gineering utility and a level of psychological plausibility that has proven a useful, if not 
vital, ingredient in agent systems. 

In seeking insights into the style of perception appropriate for modelling intention 
recognition two primary sources are considered. Ecological psychologists, notably Gib- 
son, theorise that perception is a process by which the features of the environment are 
'directly accessible' to the agent. This stands in contrast to the sense-then-infer theories 
that characterise both mainstream human psychology and mainstream agent design and 
yet is in harmony with the movement in AI toward "situatedness" that initially led to 
the widespread interest in agents. Five examples of the state-of-the-practice in interfacing 
agents with environments provides insights into the capacity of environments to be specif- 
ically designed to meet the needs of agents. These examples are interpreted in light of the 
explicit model of perception presented in Section 3.1. 

These resulting approach to modelling perception is illustrated in Figure 3.10 using 
the notation for representing high-level cognitive designs used in the software patterns 
literature [55]. 

3.2    Gibson's Theory of Direct Visual Perception 

Gibson's theory of ecological psychology (introduced in Section 2.4) highlights the 
important links that exist between organisms and environments and introduces the idea 
that there are structures in the world (Gibsonian invariants) that are directly perceiv- 
able [57]. This contrasted with the long established theory of perception as a two stage 
"sense-then-infer" process [177, 158] (See Fig. 3.2). 

To apply the theory of direct visual perception to human intention recognition requires 
an extrapolation of the theory into areas of psychology it was never meant to cover. There 
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Figure 3.2: Traditional views of visual perception require a two stage process of sensing 
and inference. Humans cannot be aware of the true physical world except by inference 
based on the raw sensory data. The inference process depends on experience, memory, 
culture and the things that collectively define how it is that the objects that fill our world- 
are perceived. Gibson's radical theory suggests that access is directly available to higher 
order structures. The strongest example of this is the idea of affordances. Gibson claims 
that objects can be directly perceived as a collection of the activities that they afford; hence 
his example of a letter box directly perceived as affording 'posting of letters'. 

is some evidence in the literature to support an extension to of the theory [45, 194] but as 
a theory of human psychology it would be widely disputed. The following section briefly 
looks at the idea of explaining human intention recognition by direct perception. This is 
followed by an account of direct perception as a design philosophy for modelling perception 
and intention recognition in agent systems. 

3.2.1    Direct Perception of Human Intent 

The higher order structures that Gibson claims are directly perceivable refer to physical 
properties of objects and not to the mental states of humans. Gibson was referring to 
invariants such as color, shape, and spatial relationships between objects. His later idea 
of affordance, however, approaches something more easily relatable to human intent. 

Direct perception of affordance allows a table to be perceived as a 'write at' or an 'eat 
here' as appropriate to the context. The affordances of an object provide the clues for 
future action by indicating the interactions that can occur between the observer and the 
object. Gibson and his colleagues were concerned with the perception of objects. But 
what if the idea that concepts such as affordance could be directly perceived was extended 
to the perception of people? 

Clearly people, unlike objects, are not passive. Their affordances, if the word is even 
appropriate are complex, dynamic, ever-changing webs of possible interactions. In Gib- 
sonian terms it might be argued that a stranger might be directly perceived as affording 
'advice-provision' to someone who is lost, but this is an over-simplification of the com- 
plexity of human interactions. 

So what would affordances that were directly perceived in people be like? They would 
give clues to the possible future actions of the person and the interaction possibilities they 
offered. Affordance is context dependant so just as a table is an 'eat here' if hungry and 
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Figure 3.3: Typical implementations of intention recognition involve sensing the environ- 
ment and inferring intent. Extrapolating the theory of direct visual perception leads to the 
idea that intent can be directly perceived. The interesting idea would be hotly debated in 
human psychology, but for modelling agent systems it provides insights into the possible 
engineering of intention recognition. From the situated cognition and ecological psychol- 
ogy literature comes clues about appropriate techniques, architectures and technologies for 
implementing this style of direct intention recognition. 

a 'work at' if busy so to would people be perceived differently based on context. It is 
not the total set of possibilities for interaction that are perceived directly, but only those 
currently active ones—the ones relevant to the current context. 

This description of directly perceived human affordance is immediately suggestive of 
Bratman's view of intention as partially executed, context sensitive plans that guide future 
action[10] combined with the style of intentional ascription proposed by Dennett [39]. 
Ascribed intention, specifically a view of intention similar to that proposed by Bratman, 
could form the basis for a psychological theory of direct intention recognition. 

That Gibsonian affordance can extend from inanimate objects like tables to humans 
will be hotly disputed27 but the idea offers insights into options for modelling intention 
recognition for intelligent agent systems. 

This extension to ecological visual perception theorises that human vision is attuned 
to directly perceive other humans by their names, types, or features, and also by their 
intentions representing future action possibilities. It is not relevant to the following chap- 
ters whether or not there is any psychological plausibility to this theory. It is enough that 
it offers valuable insights into appropriate models of intention recognition for intelligent 
agents systems. 

27Studies into human psychology suggest that the attractiveness of a prospective mate might be influ- 
enced by genetic compatibility as perceived in their physical features. Suitability for procreation is thus 
directly perceived in the phenotype as an invariant representation of genetic makeup. In the work of 
Klein, Endlsey, and proponents of naturalistic decision making [194] is evidentiary support for the view 
that something like direct perception can apply to intention recognition. They, like Gibson, state the 
importance of real environments, performing their experiments outside of the laboratory. They argue that 
experts do not hypothesize and test, and that recognising the situation has more to do with mapping onto 
memories of experiences than it does with hypothesis based inference. 
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3.2.2    Lessons for Modelling Agent Perception 

If extensions to Gibson's theory of visual perception are used as a model for the design 
of agent systems then a number of approaches are immediately suggested. The pattern 
matching literature contains references to techniques, technologies, and algorithms that 
have been applied to natural language understanding, hand-writing recognition, object 
identification, scene recognition, and many others. These technologies, particularly when 
they are applied to dynamic, virtual environments offer solutions to implementing some 
form of direct visual perception. This casts perception in intelligent agent systems as 
a pattern matching task rather than a hypothesis generation, deduction, or inferential 
reasoning problem. In Chapter 7 a pattern matching system, Claret (see Section 2.5.4), is 
applied to an example agent perception task28. 

3.2.3    Lessons for Modelling Agent Intention Recognition 

In the real world it is not clear that something as dynamic, uncertain and complex 
as an intention could qualify as a Gibsonian invariant. Experiments might be formulated 
to determine whether or not direct intent perception has merit in human psychology but 
these are well outside the scope of the thesis. 

In virtual worlds, however, the idea has substantially more merit. Not only can agents 
actually have intentions29 but because of the design control that is leveraged over the 
virtual environment there are known and designed relationships between intentions and 
data patterns in the environment. Thus the representations of intent that exist within an 
agent can be linked to the patterns that result from the execution of that intent either: 
specified by the developer at design time (see Figure 3.3); or as it executes at run-time. 

The challenges are two-fold. First the development of the software must provide a set 
of mappings that link patterns in the environment to descriptions of intention. Secondly, 
there must be a run-time process to scan the environment looking for matches to those 
patterns. This suggests a view of perception as a pattern matcher that is continually 
fed sensory data searching for the patterns that it has been tuned to detect. Patterns 
might be relatively simple: the perception component of a chess playing agent playing 
Black might observe White opening with 'b3' and bind this simple pattern directly to the 
recognised intention to play the Nimzon-Larsen Attack30. In Chapter 7 examples of more 
sophisticated pattern bindings are given. 

There is a strong relationship between the types of processes that Gibson and other ecological psy- 
chologists believe are involved in perception (particularly visual perception) and the class of technologies 
of which Claret is a member (See also Section 2.5.4). 

Whether or not humans actually have intentions is an unanswered question for philosophy and cognitive 
science but certain classes of software agent make use of computational representations of intent. 

The reader can consult any good book discussing modern chess openings for a description of the rarely 
played but interesting Nimzon-Larsen Attack. 
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3.3    Labelled Environments and Labelled Agents 

Traditional approaches to the computational modelling of perception and intention 
recognition have concentrated on the addition of sophisticated perceptual or inferential 
reasoning capabilities to the agent. The previous section showed that agent perception 
could be direct, and that complex higher order properties that were normally taken to 
be deduced, inferred, or a result of an agents reasoning could be directly perceived. The 
insights from direct perception support certain system architecture and design choices but 
do not simplify the task of implementing perception, particularly intention recognition, per 
se. But the environment is a designable part of the agent system. The environment can be 
engineered to substantially simplify agent perception. This section describes five examples 
of environments that have been engineered specifically to support agent perception. These 
examples demonstrate the capacity of the environment to be engineered and the benefits 
for agent perception that result. 

3.3.1    Example Systems 

3.3.1.1 Robot Soccer and Pitch Design 

An international competition aimed at improving many aspects of robotics, Robocup 
soccer [98] is attracting increasing interest from the AI, robotics, and the agent research 
communities. Robocup soccer provides several strong examples of the impact that envi- 
ronmental design can play in easing agent perception. Red and blue patches applied to the 
bodies of the dogs afford identification of friends and foes. The ball is orange to improve 
visual differentiation from the green playing surface. The strongest example is the green 
and pink poles that mark important points around the playing arena (See Fig. 3.4). These 
poles serve no purpose other than to assist the dogs in the localisation task by presenting 
them with a static, easy to perceive, set of reference points. By adding artifacts to the 
environment the task of providing the agents with perception related behaviours is eased. 
Theoretically it would be possible for the dogs to function without these visual aids. The 
competition organisers have judged that benefits gained by reducing the processing load 
on the agent warranted the addition of the artificial aids to the environment. It is worth 
noting that this decision couples the agent with the environment 

These poles are engineered into the agents environment to assist perception. Just like 
sign-posts indicating the names of streets, these poles are labels placed on an environment 
to supply information that would otherwise be difficult to infer. 

3.3.1.2 Information Agents and Web Page Design 

The world wide web emerged as a massively interconnected network of pages writ- 
ten using the HTML. The importance of search-engines and information agents grew as 
the web expanded and although the HTML supports web-page authoring and display by 
browsers it is not well suited to inspection by information agents, bots, or search-engines. 
Perceiving an HTML web environment requires an agent to parse the page and to reason 
about the content. Searching the web for information is invariably goal-directed in that 
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Figure 34: Even real world environments can be labelled to ease the task of engineering 
agent perception. The playing arena from the Robocup legged league. Note the presence of 
pink and green painted poles that assist the dogs perception subsystems localise, easing the 
task of orienting the dog on the playing arena. 

there is query that is to be satisfied but the lack of relevant semantic content in the lan- 
guage structure makes HTML pages almost as difficult to search as free-text. Although 
there has been substantial ground gained in natural language processing techniques un- 
derstanding the content of web-pages is still problematic. 

One solution is to add structure to the page to assist information agents in perceiving 
the web. Meta-data and XML tagging allows semantic content to be added to web pages. 
The problem of course is that the information agent must be aware of the structures in the 
meta-data creating the need for standards governing the adoption of a particular meta-data 
set. The Dublin Core is an example of an international meta-data standard. Developed for 
generic resource description it provides a set of core concepts that are broadly applicable. 

At present most search engines do not make use of the obvious advantages that well 
structured, tagged web pages can offer, because of the troublesome widespread practice of 
spamming. By adding misleading tags unscrupulous developers can trick search engines 
into directing traffic to their web-sites. 

Figure 3.5 illustrates the design possibilities for implementing information agents. 
With the ultimate goal being an understanding by the information agent of the struc- 
tured content of the web it is clear that the placement into the page of higher order data 
reduces the need for complex inference process to deduce page content. 

3.3.1.3    Augmented Reality 

The mobile augmented reality system (MARS) from the University of Columbia is an 
example that blurs the line between real and virtual worlds but provides a strong example 
of environmental labelling in an attempt to assist perception. 

MARS is a wearable helmet system. A user walks around in the real world and the 
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Figure 3.5: A number of options exist for implementing information agents. The web 
page can be rendered as a bitmap image which is then fed to a machine vision system that 
interprets the characters and images on the page. This extremely difficult task might seem 
somewhat pointless given the accessibility of the underlying HTML representation but has 
been proposed [101] and offers the advantage that the agent "sees" an image similar to 
that seen by the human. If the HTML is accessed directly then perception simpler but an 
inference process is required to extract semantic content from the resulting text. If the 
XML representation is parsed then the metadata provides structured knowledge about the 
content of the web page. This is a strong example of how raising the level of abstraction 
of the data available in the environment can assist agent perception. 
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Figure 3.6: The Mobile Augmented Reality System (MARS). MARS superimposes textual 
descriptions onto the campus at Columbia University allowing the user to navigate and 
obtain useful information about the buildings and the history of the school. It is a strong 
example of a labelled environment, though the labelling is performed by the MARS system 
and the environment itself is not engineered. Extensions might see transponders attached 
to buildings that could provided useful contextual information. 

system augments human vision by superimposing textual information (See Figure 3.6). 
The concept is similar to the heads-up display used in fighter aircraft that assists pilot 
visual perception by superimposing data from the aircraft sensors onto an transparent 
screen that allows a pilot to maintain an lout-of-the cockpit' view. 

MARS in isolation is a device for augmenting perception. But with this type of per- 
ception aid the environment could be engineered to assist the MARS unit. Transponders 
could be attached to buildings that would react to the presence of a MARS unit and 
transmit relevant information about the building for display to the wearer. Thus a MARS 
wearer might look at the train station and automatically receive an update of all the trains 
that are to leave in the next five minutes. The system, though human focussed has many 
of the properties of intelligent, agent systems relevant to this thesis31 and is yet another 
example of engineering environments to assist agent perception. 

3.3.1.4    Why Virtual Fighter Pilots Fly into Virtual Mountains 

It is often difficult to place computer generated forces into existing military simu- 
lators. This is true of air, land and sea domains and has been widely reported in the 
literature [140]. One of the difficulties is related to the ability of the computer generated 
force to perceive the environment. Observing other aircraft is usually not problematic 
for intelligent agents. Models of sensors (radars, eyesight and others) provide information 
about other aircraft in a form that computer generated forces can deal with [80]. But the 
environment: the clouds; the ground; the buildings; and the mountains, are second order 
entities in the simulation and detecting their existence and reasoning about them is often 
impractically difficult. This leads to the often observed phenomena of computer generate 
forces being blind to some objects in the environment. 

Note to self. I haven't seen it mentioned anywhere but imagine the cool stuff possible with interactions 
between two MARS units. I look at someone and their MARS unit tells my Mars unit that they are busy 
and don't want to be disturbed. This then gets displayed on my screen. This is computer assisted human 
intention recognition. How the other guys MARS unit knows that he is busy is a tricky problem but I can 
imagine solutions. 
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Figure 3.7: The graphical databases of flight simulators can be labelled to increase the ease 
with which agents are integrated into the virtual environments. 

Historically this is due to these entities existing in the simulation to provide a rich and 
engaging visual experience for a human involved in a training exercise. The representations 
of these environmental elements (perhaps in some graphical database) is designed with 
pixel rendering in mind and shortcuts, designs, and constraints are imposed by the image 
generation capabilities. Converting the graphical representations of these objects into a 
form that is accessible by the computer generated forces is a challenge. 

Solutions can involve constraining the computer generated forces to operate only in a 
range of conditions where the interactions with the environment are not at issue but this 
is not always possible. Recent initiatives by some simulation developers include the ability 
to "mark-up" terrain databases with information specifically for the computer generated 
forces. Whilst certainly a step in the right direction these systems usually offer only limited 
support for dynamic relabelling of the environment. 

As compared with older technologies for developing computer generated forces, agents 
have provided considerable benefit to the simulation community. Benefits are realised in 
pragmatic engineering terms by reducing the development time or maintenance cost but 
also in providing modelling constructs and paradigms that have allowed for consideration 
of a variety of new issues that were previously intractable. But costs associated with 
retrofitting existing simulation environments with the infrastructure necessary to support 
intelligent agents can be prohibitive. Clearly future implementations of simulation envi- 
ronments and the computer generated forces that will inhabit them will need to deal with 
these issues. In Chapter 8 insights for the development of other systems based on the 
findings of this thesis are discussed and evaluated. 
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I 

Figure 3.8: Computer generated adversaries in Strike Fighter are labelled to ease the game- 
play. This type of labelling is common in computer games. 

3.3.1.5    Labelling Agents and Environments in Computer Games 

Many computer games make use of labelled agents to simplify game-play. Figure 3.8 
shows a screen-shot from 'Strike Fighter: Project l'32 displays a number of adversary 
aircraft that are labelled with their identity and an indication (using color and other 
symbology) of the side they are on and other aspects of their mission. 

This idea has been extended by the developers of the game 'Black and White' to include 
a description of the current action of the inhabitants of a virtual world that is under the 
control of the player (see Figure 3.9). Not only are these labels available to the human 
player but they are also used internally by other computer generated characters to assist 
them with decision making [46]. 

3.3.2    Designing Labels For Agent Systems 

An Agent Parable: The Saga of the Rat and the Drain-Pipe33 

It was a dark and stormy night.   Peter was walking down by the river.   He was a 
gentleman of small stature but of great courage—with one exception—his rat phobia. 

32This game is published by Third Wire and simulates jet fighter combat between large numbers of 
aircraft. 

The following example was the source of much discussion within the Agent Lab at the University of 
Melbourne. The original example was provided by Dr Peter Wallis and he is honored here with the starring 
role. 
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Figure 3.9: Characters in 'Black and White' are labelled with an indication of their internal 
state. Not only is this information valuable for the player in determining a course of action, 
but the same labels are also available to other characters in the game to assist them in 
determining appropriate activities. The numbers are quantitative representations of the 
agent's internal state and the label indicates the current activity. 
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He feared them and hated them passionately. Rounding the corner by the boat-sheds he 
found himself staring directly at the second biggest nastiest rat he had ever encoun- 
tered. The rat was chewing on a piece of bread that it had found and was so engrossed 
that it hadn't yet seen him. Unfortunately Peter's normally stout constitution failed 
him., and he squealed. The rat. sta.rtled by the noise, jumped around. There they stood. 
6 feet apart, both frozen to the spot, waiting for the other to move. Peter, being an 
intelligent fellow understood that the rat was probably as afraid of him as he was of it. 
But the rat's fur was standing on end and it took a couple of quick steps toward him.. 
Peter squealed again and the rat froze. "Oh no", thought Peter, "the rat is coming 
to get me". Glancing around for a stick with which to defend himself Peter spied the 
opening of a small drain-pipe a few feet behind him. "Wheeew!", he breathed a sigh of 
relief. "The rat really is scared, it is just looking for a place to hide—a place like that 
drain-pipe—and I am standing between it and safety." Peter took a couple of big steps 
sideways and the rat scurried up the drain-pipe faster than a rat up a drain-pipe. 

The interaction between Peter and the rat seems plausible enough. Peter (successfully) 
predicts the behaviour of the rat by understanding that rats are scared of humans and by 
recognising that when scared a rat would wish to find a place to hide. He saw that the 
drain-pipe represented a such a hiding place. Though Peter initially thought the rat was 
about to attack, the realisation that he was standing between the rat and a hiding place 
allowed him greater insight into the rat's intention. When he moved out of the direct path 
between the rat and its hiding place, the rat ran up the drain-pipe as expected. 

There are lessons in this seemingly simple (though actually quite complex) interaction 
that illustrate some of the main points of this Chapter. To shed light on these points 
consider the scenario outlined above as a description of an agent system that is to be 
labelled to assist in the perception related tasks of those involved. Several options for 
labelling this agent systems exist for assisting Peter's recognition of the rat's intention: 

1. The drain-pipe might be labelled drain-pipe. This would assist Peter in perceiving 
the drain-pipe but provides no extra insight into the rat's intention. 

2. The drain-pipe could be labelled as place where rats hide. This would suggest to 
Peter that the drain-pipe would serve as a hiding place for the rat and provide an 
option to consider. 

3. The drain-pipe could be labelled as place where the rat standing in front of 
Peter is about to run. 

4. The rat could be labelled with scared. While providing insight into the rat's internal 
state Peter will still need to infer the rat's intention. Perhaps rats sometimes attack 
when scared so the intention to hide in the drain-pipe still requires uncovering. 

5. The rat could be labelled as scared and trying to hide. Now Peter will know that 
the rat is trying to hide and can, upon perceiving a suitable hiding place, deduce 
that the rat intends to hide there. 

6. The rat could be labelled with intending to run into the drain-pipe behind 
you. This is the complete and unambiguous labelling of the rat's intention. This 
type of label completely circumvents the need for any further intention recognition 
process by Peter. 
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The labelling schemes above each have particular qualities to be evaluated in designing 
the system. The first two options are static. The labels are fixed with respect to the 
unfolding scenario. Option 2 is less general than 1 in the sense that the labelling of the 
drain-pipe as a place where rats hide assumes the presence of rats. Hence there is a coupling 
between the design of the label for the drain-pipe and at least one other element in the 
system (the rat). Options 3 and 6 are similar in their content but applied in different place. 
Another possibility might be to label both the rat and the drain-pipe with a single label: 
the label might be applied to a relationship between two objects and not any individual 
label. Option 5 indicates only the general nature of the internal state of the rat without 
specific information about its future actions. This contrasts with option 6 which strongly 
indicates its future actions without commenting on the mental state that led to those 
action (i.e. that the rat was scared.). 

A detailed discussion of the pros and cons of particular labelling choices is beyond 
the scope of this section. Transposing the insights from the story above into modelling 
intention recognition for agent systems is handled in Chapter 5. 

3.3.3    Lessons for Modelling Agent Perception 

Labelling environments can simplify the design of agent perception. Examples of this 
are plentiful yet few cast the problem as a software design exercise and solutions result 
from gradual evolution or pragmatic necessity with little thought given to the range of 
possibilities. A reasoned approach to the design of labelled environments requires an 
explicit model of perception (such as that described in Section 3.1) as an intermediary 
between the requirements of the agent and the requirements of the environment. 

Dennett warns us that attaching labels to representations of the environment does not 
in and of itself provide knowledge. 

"Understanding then cannot be accomplished by converting everything to the currency 
of mental pictures, unless the pictured objects are identified by something like attached 
labels, but then the writings on these labels would be bits of verbiage in need of com- 
prehension, putting us back to the beginning again."—Daniel Dennett, Consciousness 
Explained, page 57. 

This problem is avoided in computational agent systems due to their designed nature. 
Dennett correctly points out that explaining consciousness as a series of labelled mental 
images fails due to infinite regress when these images are referenced. But agents suffer no 
such problem. Meaning, content, knowledge and comprehension can all be established if 
the 'bits of verbiage' are expressed as concepts in the agent's ontology. Or more correctly, 
the agent's ontology provides an explicit a-priori knowledge level theory that grounds 
perceptions of the agent's environment. Critics will argue that this dilutes the agent version 
of words like knowledge, meaning and consciousness. Answering this criticism can be 
attempted in two ways. First, and most controversially, by claiming that there are of course 
conceptual labels in the world that human perception is attuned to and mirroring this in 
agent systems is perfectly valid—the argument from ecological psychology and situated 
cognition.   Second that the construction of an agent system is an activity that requires 
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the software engineer to provide grounded knowledge to the agent through careful design. 
If this manifests as "something like attached labels" then the meaning is encapsulated 
in the design choices related to the specification of those labels. A design process that 
recognises the distributed and situated nature of agents will result in a labelling scheme 
based on the subjective requirements of individual agents and not on global objectivity. 
Ultimately agents must act in environments. Within the software engineering constraints 
of flexibility, coupling and cohesion, reusability, and simplicity, labelling choices must 
reflect and support agent activity. As a general rule, labels should support the agents 
reasoning by providing grounded referents for the agent's intentional states. If this is 
achieved the symbol binding problem is avoided, along with the intricacies of inferential 
reasoning. The software engineer designs out these problems rendering the agent system 
both simpler and more abstract. 

3.3.4    Lessons for Modelling Agent Intention Recognition 

These examples from real and virtual worlds where perception can be assisted through 
suitable design of the environment provide insights for modelling intention recognition 
for intelligent agent systems. In simplest form an agent can be tagged with its currently 
executing intention and this tag can be read directly by another agent. 

Not all agent have an internal representation of intention with which they might label 
themselves. In these cases the intention must be ascribed. The point is that this ascription 
need not necessarily be undertaken by the observing agent but can be performed by the 
software engineer at design time. This substantially reduces run-time complexity but 
requires supporting design-time models. 

Alternatives to 'intention tagging' are available. Perhaps the 'actions' that the agent 
takes in the world could be tagged so that these might be directly perceived. This removes 
the direct access to intent but simplifies the process of inferring intent. These ideas and 
others and the implications of particular design choices are explored further in Chapter 5. 

3.4    Perception Subsumes Communication for 
Modelling Intention Recognition 

In introducing this thesis it was noted that intention recognition is a human activ- 
ity that substitutes for communication. By observing the environment and inferring the 
mental states of others it is possible to gain predictive insight into their actions without 
requiring them to communicate. The link between perceiving the environment commu- 
nication begs question about the nature of this relationship in agent systems. Taking 
a situated view of agency, emphasising the importance of environments, suggests a de- 
sign approach where perception subsumes communication. A design stance that includes 
agent-to-agent communication into perceptual input has several advantages. 

Perception has already been presented as the means by which environmental data is 
abstracted or otherwise transformed to meet the requirements of the agent. The defini- 
tion of perception is now extended to encompass the translation of agent communication 

64 



DSTO-RR-0286 

into the concepts appropriate for the receiving agent. One of the challenges facing the 
agent community is the issue of agent communication languages (ACL). Efforts are under- 
way to standardise agent languages to facilitate interactions between agents. If all agents 
speak the same language, then interactions are eased significantly. Widely adopted agent 
communication standards are problematic given the differences apparent in the systems 
that must now communicate in an environment where large networks are proliferating. Re- 
search and development into local or shared ontologies is based on the belief that universal 
agent languages are unrealistic and solutions lie in the development of translation mech- 
anisms. Perception is proposed as the module that also handles the parsing, translation, 
and understanding of agent communication. Perceiving the environment was ostensibly 
about the abstraction of low-level data into appropriate forms. Understanding and assimi- 
lating the content of communication from another agent is primarily a translation activity. 
Strictly agents do not need to send messages formed with knowledge-level concepts but the 
assumption that they do is derived from the definition of agents as knowledge level enti- 
ties. As a general design principle several researchers have commented on the desirability 
of high-level agent communication [35, 112]. 

Some agent systems, particularly those that require data fusion (sometimes known as 
multi-sensor integration) make use of communication from other agents as one of their 
data sources. In these cases, or in any system where agents receive information via com- 
munication that might assist, replace, augment, or inform perception of the environment 
it makes sense to handle that communication within the perception module. By process- 
ing the data in a single place it is possible to present the agent with a fused, coherent 
representation. 

If all data processed by the agent are handled by a single logical module then the 
design is simplified. The perception module provides the complete specification of all 
inputs to the agent. This improves modularity and decreases coupling. For example a 
digital assistant's34 perception module might provide the knowledge that "Loretta will fly 
to Melbourne tomorrow". For the purposes of the functioning of the agent it does not 
matter how the agent gained the information: perhaps it was told by Loretta; perhaps 
it was told by Loretta's personal digital assistant; or perhaps it inferred the knowledge 
by reading Loretta's e-mail and on-line credit card purchases. It doesn't matter if the 
knowledge was communicated by a human, by another agent, or perceived by observing 
the environment: in all cases the knowledge of Loretta's travel is the same. 

There are some applications where it might make sense to incorporate communication 
into the model of perception and to integrate all data entering the agent (regardless of the 
origin). This treats communication as just another source of information about the world. 

Applications that will benefit from a model of perception that subsumes the receipt 
of communication are those where interpreting state of the world is important. And that 
world is rich, both in terms of communication from other agents, and data from other 
sources. 

34For a good example of agent based digital assistants see the Electric Elves development of Pynadath 
et. al [145] 

65 



DSTO-RR-0286 

3.4.1    Lessons for Modelling Agent Perception 

Perception is about interpreting the environment. Communication from other agents is 
a valuable source of information about the outside world and agent designs that allow for 
the integration of information from all sources are preferred. Adding communication to the 
set of information sources that are processed by a model of perception allows information 
gained from other agents to be fused with data obtained from observing the environment. 
The agent can be designed as responding to a view provided by the perception module 
without considering what the origin ofthat information is. It doesn't matter at design time 
if the agent becomes aware of some piece of information by observing the environment, or 
as a result of communication from another agent. 

Agents can communicate about the environment and about objects, features, or events, 
that might otherwise be observed. If communication is reliable and an agent is trusted 
then communication about an object can remove the need for it to be perceived. For the 
purposes of agent design it might not matter whether an agent is told about an object or if 
it senses it by itself. In these applications it makes sense to incorporate communication (at 
least as it pertains to events, features, and information that would otherwise be sensed) 
into the model of perception. 

3.4.2    Lessons for Modelling Agent Intention Recognition 

In the simplest possible implementation of intention recognition agents simply commu- 
nicate their intent to each other directly. Though not really recognition in any strict sense 
it is a perfectly adequate means of modelling intention recognition. The result of successful 
intention recognition is that an agent becomes aware of the intent of an other. In human 
terms intention recognition can substitute for communication. In agents the relationship 
is bi-directional. Not only can intention recognition substitute for or assist communica- 
tion but communication can assist or substitute for intention recognition. This highlights 
a design difference between requiring intention recognition in agents as a simulation of 
human behaviour and requiring intention recognition in agents as an aid to the general 
functioning of the agent. In agent systems where intention recognition is mimicking the 
human equivalent (i.e. military simulators) and direct agent-to-agent communication is 
available then communication might be used to model intention recognition. 

Some implementations of agent intention recognition might make use of information 
gleaned from the environment to supplement partial, ambiguous, or unreliable commu- 
nication. In this scenario communication provides some of the evidence that must be 
considered when inferring intent. 

In other implementations agents might communicate partial information about their 
intent or, as was indicated in Section 3.3, the agent might be labelled directly with its 
intent. This creates a system that is from the perspective of the recognising agent func- 
tionally identical to the complete communication of intent. 
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3.5    Bridging the Abstraction Gap: An Explicit 
Model of Perception 

Designing agent systems requires that consideration be given to the abstraction gap 
that separates agents and their environments. An explicit model of perception allows 
the agent system to be modelled and design choices made by providing an intermediary 
between the agent and the environment that can hold and process data as necessary. In 
general terms the interface design issues that can be addressed by an explicit model of 
perception in one of four ways (See Figure 3.10): 

1. Design the agent to reason with low-level data that can be directly sensed from the 
environment. This effectively removes the abstraction gap by.lowering the agent to 
the level of the environment. Unfortunately this approach removes one of the primary 
advantages of agents: their level of abstraction and ability to reason with abstract 
data. For agents that must exhibit intention recognition this is unacceptable. Or 
design the environment (other software components) to operate with the types and 
abstractions of data used by the agent. This is seldom possible in all but the simplest 
settings and an assumption that this is possible is one of the failings of many proposed 
approaches to developing agent systems. 

2. Design a perception module capable of 'recognising' patterns in the environmental 
data and thus providing a direct mapping between the low-level data and the higher 
order forms. 

3. Engineer higher order representations of the low-level data into the environment. 
These high-level representations can then be directly sensed. 

4. Sense the low level data and utilise a reasoning process to infer the higher-order 
structures. 

In application the four designs described in Figure 3.10 circumscribe a space within 
which solutions will be found. In Chapter 5 the lessons of this Chapter are applied directly 
to the task of modelling intention recognition. 

This chapter has developed a view of perception as a process within the agent that 
transforms data from the environment into the form required by the agent. Characterising 
it in this fashion suggests that it is a software interface. In standard software development 
interfaces between system components must often convert data35 but intelligent agents 
typically operate at the 'knowledge level'[125] and manipulate higher order concepts than 
those found in other varieties of software. Thus the interface between agent and envi- 
ronment must, in addition to other data transformations, abstract the data or otherwise 
transform it into knowledge level representations suitable for agent reasoning. Perception 
is a perfectly appropriate metaphor for this process in intelligent agent systems. Not only 
does it accurately reflect the nature of the interface but it carries the anthropomorphism 
often sought when describing intelligent agent concepts. 

35Language translation, unit of measure conversion, axes translation, are all examples of routine data 
conversion functions required in software interfaces. 
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Design the system to use only high-level data  This is possible only in 
systems that are designed specifically for agents and have little or no other 
interactions and/or have highly specialised/idealised/abstract models of the 
environment 

Design the system to use only low-level data  This constrains the types of 
reasoning possible and limits one of the benefits of agents - their knowledge 
level operation. This is impractical in systems that must model intention 
recognition 

f      Design      J 

Low-level Data 

Design the environment to support agent perception. Tagging or labelling 
virtual environments are common ways of achieving this but even the real 
world can be engineered to ease agent perception. 

Provide a mechanism for directly perceiving the representations of the higher 
order structures in the detail of the low-level data  This might require a 
pattern-matcher of some other technology. 

^ High-level Data 

Sense the low-level data and manipulate and reason about that low-level 
data in order to infer the presence of the higher-order structures. 

Figure 3.10: Bridging the abstraction gap. A number of plausible options for bridging the 
abstraction gap are available. 
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3.5.1    Advantages of an Explicit Model of Perception 

The task of designing agents often focusses on the provision of functionality to the 
agent. This design fixation precludes the possibility of exploring the capacity of other 
elements of the system to designed to specifically support the required agent functionality. 
Intention recognition is part of a broad category of behaviours that are linked closely to 
capacity for the agent to perceive events and structures in the environment. An explicit 
model of perception provides a means for the software engineer to consider many aspects 
related to the provision of perception related behaviours to agents, and offers several 
advantages. 

Perception Integrates the Environment into Agent System Design A model of 
perception provides a useful way of arbitrating the design interplay between the 
environment and the agent. As a design time aid it allows consideration of a number 
of design alternatives that, with respect to perception related functions, might not 
have been previously considered. 

An explicit model of perception offers insights into design solutions and allows for 
the more flexible consideration of the design trade-offs available when developing 
agent systems. An important consideration when developing intelligent agents is 
designing the means by which they become aware of the events and structures present 
in their environment. If the environment is complex, or if the information available 
in the environment is in an inappropriate form, then a mismatch exists between the 
information required by the agent and that which is available. 

In practice this information mismatch is solved in a number of ways. Conceptually it 
is common to think of an 'interface' or an API to an agent that allows it to connect 
to other systems. This interface provides the mechanism by which data enters the 
agent and typically there will be some manipulation or translation of data within 
this interface. This model of situating an agent in an environment is suitable if the 
information mismatch is small. If the environment is sufficiently rich or if there is a 
significant mismatch between the information available in the environment and that 
required by the agent this mapping is not straightforward. 

There are other mechanisms for dealing with the mismatch however. It might be 
possible to design into the environment information structured in the form required 
by the agent. Meta-data within web pages is an example of an effort to provide 
constructs in an environment in a form appropriate for information agents. Just as 
the environment can be pushed conceptually closer to the agent so too can the agent 
be pushed closer to the environment. This may compromise agent design [116], or 
it may force the adoption of agent architectures that function directly with the data 
gleaned from the environment. 

The mismatch can also be removed if all of the system components utilise the same 
set of concepts. This drives research into standard or sharable ontologies. Finally a 
sophisticated mapping function can convert from the form of the information avail- 
able in the environment to the form required by the agent [72]. 

Within this landscape of agent-environment data translation possibilities lies a de- 
sign space that requires careful modelling.  The task is to determine the concepts 
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required by the agent and those that are to be made explicit in the environment. 
If these are different—as they almost inevitably are—then some way of resolving 
this mismatch is required. An explicit model of perception provides the necessary 
conceptualisations to assist these decisions. 

Perception Allows for a Separation of Agent Modules Human perception seems to 
be a fundamentally different type of phenomena than human cognition. The demar- 
cation between perception and cognition is not always clear and there is no agreement 
in the psychology literature about where a line (if any) should be drawn. Mirroring 
this uncertainty the AI research community has developed disparate technologies to 
simulate different aspects of intelligence [120]. Or conversely, it might be argued that 
the AI community has been inspired and guided by the different qualities of aspects 
of human intelligence to explore and develop different technologies. Whichever is 
correct it seems likely that the future of AI will require a compositional approach to 
intelligence that allows a variety of technologies to be integrated (see Section 1.3 for 
more details). Designing intelligent systems comprising hybrid technologies requires 
models that distinguish the various components of a intelligence to which the differ- 
ent technologies will be applied. An analysis of just what these components might 
be is beyond the scope of this thesis but a perception module seems like an intuitive, 
inevitable, and appropriate first step. At the very least it allows the segregation of 
perception and cognition—two of the more important concepts of human psychology. 

AI and cognitive modelling aside, modularity and encapsulation are desirable prop- 
erties of software and a division between an explicit model of perception and the 
reasoning of the agent is appropriate. Determining where this division is made is 
not simple but is one of the tasks of design that is facilitated by an explicit model of 
perception36. This thesis sidespteps any argument over the scientific credentials of 
particular theories preferring to allow flexibility in design and advocating the means 
by which particular theoretical approaches might be incorporated into the software 
engineering process. 

Perception is Relevant to Simple and Complex Systems Perception might be as 
simple as an HTML parser and a substring matcher for an information agent, or as 
complex as a stereo-camera based vision system with object detection algorithms for 
a robot. Importantly the term perception can apply to both and has design-time 
value in both cases. In Section 3.3 five agent/environment pairs are described in 
terms of an explicit model of perception It will be shown that over a range of cases 
not only can an explicit model of perception describe existing implementations but 
it makes apparent the range of alternatives. 

Perception Models a Software Interface There are good standard software engineer- 

Robotocists tend to draw the line at the boundary of the different technologies used to build the 
robot. Machine vision systems are purchasable as COTS modules that can be integrated with other AI 
technologies. Chalmers, French, and Hofstadter [26] and other AI researchers believe that perception and 
cognition are intimately intertwined and cannot be separated. Or more accurately cannot be separated 
at the point where AI is prone to separate them. They propose a model of high-level perception which is 
inextricably linked to cognition but are happy to separate cognitive activities from low-level perception. 
Their argument is not that a line between cognition and perception can't be drawn, but exactly where it is 
drawn. Indeed an adherence to the Chalmers model of high level perception could be one of the influences 
on the perception/cognition demarcation issue. 
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ing reasons for modelling perception. Perception, as defined in Chapter 1, is an 
interface between two software modules. Interfaces and the architectural design of 
systems always present headaches for the software engineer. Not only are most soft- 
ware bugs found at interfaces but integration issues, the bane of software project 
managers, are one of the primary causes for delays in software development [178]. 
Techniques for managing the complexity of interfaces are valuable as part of any 
software engineering process. Agents present particular interfacing challenges due to 
their autonomy, level of abstraction, and their common employment as post deploy- 
ment additions to large existing software systems. An explicit model of perception 
facilitates the architectural design by making clear the assumptions, constraints and 
requirements associated with the agent/environment interface. 

Perception Has Anthropomorphic Intuitiveness Anthropomorphism is one of agent 
technology's strengths and agents are often endowed with human qualities [25]. Many 
agent researchers have noted that developing agent software is assisted by adopting 
concepts that can be easily related to human behaviours and consequently percep- 
tion is a concept considered an important part of many definitions of agency. The 
term perception evokes appropriate metaphorical weight and invokes an intuitive 
semantics entirely appropriate for describing the process by which an agent interacts 
with the environment. 

Perception Encourages a Knowledge Level Approach An explicit model of percep- 
tion encourages the software engineer to specify the knowledge level concepts that 
the agent should manipulate rather than simply adopting the data structures that 
were provided by the environment. In doing this it facilitates the development of 
agents that manipulate more abstract data. By encouraging the specification of 
agents that utilise knowledge-level data the way is cleared for the incorporation or 
development of ontologies. If a standard or shared ontology is to be used this will 
manifest as a set of constraints over the types of data that the perception module 
must provide. Allied to the adoption of ontologies is the idea that the reasoning pro- 
cesses of the agent can be raised above the lower level processing of the remainder 
of the system using the perception module as the means by which the agent-proper 
is segregated. This ensures that the agent manipulates only the high level data ap- 
propriate to it—an agent based interpretation of what some researchers have called 
"maintaining ontological purity" [110]. 

Perception Subsumes Communication Perception not only provides a way of man- 
aging the complexities of interfacing agents and environments but it is also an ap- 
propriate mechanism for translating communication between agents. Including com- 
munication as a type of perceived data simplifies tasks that require integration of 
different types of data and in some cases provides for more modular designs. 

3.5.2    Toward a Modelling Methodology 

The exploration of modelling methodologies is beyond the scope of the thesis but a 
brief account will make clearer the importance of the environment in conditioning the 
design of the agent. It will be shown in Chapter 4 that a modelling methodology like that 
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1. Is there a global ontology that must be used? 
2 How suitable is Ihe ontology for the requirements of the agent' 
3 Whal additions/modifications to 1he ontology are required? 

1. Data provided by perception module? 
2. Is Ihe data in the appropriate form tor reasoning? 
3. Is it consistent with the ontology? 

1. What data is required to establish these concepts? 
2. What concepts must perception provide? 
3. What concepts can be inferred - how does this 
effect the ontology and the design of reasoning? 

1. What is Ihe farm of the data provided by Ihe environment 
2. What techniques for mapping the data into an appropriate 
forms abstraction, aggregation fusion are available 

I.What concepts are required to be perceived? 
2 What data must be supplied by the environment lo support Ihis perception? 
3 What concepts can be Inferred - how does this effect the ontology and the 
design of reasoning? 

1 Can the required representations be 
provided by the environment? 
2. How a re the representations added? 
3 Are these representations subjective or 
objective static or dynamic? 

Figure 3.11: Perception can be used to assist in the design of an agent system by ar- 
bitrating the design interplay between the agent and the environment. A design process 
can iterate through this diagram asking and answering the questions and converging on a 
design solution. 

shown in Figure 3.11 can incorporate the design and development of an agent's ontology 
into the software engineering process. This is important in dealing with knowledge level 
concepts (like intention) that might in some cases, be communicated between agents. 

Figure 3.11 indicates an iterative process that considers the requirements of the ontolo- 
gies, the agent, the perception process, and the environment. Theoretically the process 
may be commenced at any point, though in practice experience has shown that a consid- 
eration of agent behaviour is a suitable starting point [70]. 
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Chapter 4 

Ontologies and Agent Design 

"All this talk about ontologies reduces to 'Use sensible variable names.'"—Michael 
Papasimeon, personal communication, 2000. 

"All this conjecture—the 'ontological shock' that you speak of, for which we are so 
ill-equipped—is not only false but dangerous."—Fox Mulder, The X Files: 'Patient X' 
Episode 

This chapter provides a definitive account of ontologies as the explicit specifications 
of the concepts that characterise an agent system and elaborates the important role that 
ontologies play throughout agent system design. A consequence of the model of percep- 
tion introduced in Chapter 3 is that it enforces, or at least encourages, a more reasoned 
approach to determining the concepts to be represented in the agent: concepts including 
those that are perceived from the environment and those that are a result of communica- 
tion from other agents. This set of concepts is the agent ontology, or more correctly, is a 
part of the agent ontology. 

That ontologies are an important part of the specification of agent systems is by no 
means accepted, though Gao and Sterling [54] and Zini and Sterling [193] provide strong 
evidence of the utility of ontologies in agent system development. Similarly Guarino [66] 
cites several reasons for adopting an ontological view of knowledge based systems. Few 
researchers actively consider ontologies as an artifact of the agent design process and so 
the literature describing agent design focuses on the impact of ontologies on agent design 
or on ontology design as separate process. 

Though not central to modelling intention recognition, the description of the means by 
which ontologies assist the development of agent systems is a valuable by-product of the 
perception-based the modelling approach adopted in Chapter 3. Agent communication is 
commonly expressed in a vocabulary specified by an ontology. That intention recognition 
can substitute for communication in social activity led to the insight that the results of 
the intention recognition process might also be expressed in terms of the agent ontology. 

Section 4.1 defines ontologies in the context of agents and agent design and reconciles 
some differing views of ontology. The definition of ontology presented is an amalgamation 
of the various views expressed in the literature but there are subtle clarifications of detail 
that result from a focus on agent systems design. 
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Section 4.2 builds on the foundation of Section 4.1 by discussing the role that an explicit 
model of perception can play in acting as an ontology translation mechanism. This section 
extends the model of perception introduced in Chapter 3 by presenting perception as the 
software component responsible for ontology translation. 

Section 4.3 discusses the implications for modelling intention recognition. Adopting 
ontologies for design requires techniques for decomposing knowledge about the intentions 
to be recognised. At the highest level an intention might be simply described by word 
or phrase, and indeed this might be all that is required for the purposes of intention 
recognition. Decomposed into parts and elaborated in greater detail an intention becomes 
the description of past and future actions, participants, goals, events, objects, patterns, 
data and any descriptive knowledge necessary. An ontology that describes the intentional 
states of an agent is a prerequisite for modelling intention recognition but has properties 
that have wider application and are compatible with the situated cognition literature that 
has flavoured much of this thesis [70]. 

Finally Section 4.4 shows that the consideration and development of ontologies is inte- 
grated into the agent system design process. If the ontology is predetermined—as might 
be the case with the adoption of a global, shared ontology—then the result is a set of 
constraints over the agent design. When the agent is constrained to manifest a particular 
ontological commitment perception plays the role of translator between the domain on- 
tology and any preferred internal ontology. If however the ontology is not pre-specified 
and is one of the products of design then an explicit model of perception play an impor- 
tant role in developing the ontologies that characterise the agent system. This provides 
an approach to ontology development that is tightly coupled with standard software en- 
gineering. Designing ontologies is an interesting and growing field of computer science. 
Interesting, because it touches on the essence of good old fashioned AI, the structuring 
and representation of knowledge. Growing, because as large networks proliferate in an 
e-commerce environment, the computer arbitrated interchange of knowledge between di- 
verse groups is becoming central to the business world. An engineering approach serves to 
demystify the "black-art" of ontology design [175] by treating it as just another software 
engineering activity and not as an independent discipline. 

4.1    Ontologies and Agents 

Many researchers have proposed definitive accounts of ontology but Gruber's has the 
advantage of being widely accepted, succinct, and useful: 

an ontology is a formal specification of a conceptualisation [63]. 

Exactly what this definition means in the context of agent design will be elaborated in 
this section by comparing and contrasting the ontology literature with an eye to providing 
a clearer account of the role ontologies play in agent system design. Ontologies, as they 
are documented in the literature, can be classified in several ways: 

Classification by Use Accepted uses for ontologies fall predominantly into two cate- 
gories.   The first, and most widespread, uses ontologies to provide a vocabulary 
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specifying the meanings of and relationships between concepts pertinent to a do- 
main [66]. In this role ontologies facilitate communication by establishing a basis for 
a shared understanding or at least a means of translating from one understanding of 
the domain to another. Communication can be between humans, between software 
systems, or between humans and software systems. Ontologies can also specify the 
important concepts, relationships and structures pertinent to a component of a sys- 
tem. In this role ontologies facilitate system engineering by providing a specification 
of a component that aids reuse, maintenance, or requirements modelling [86]. 

Classification by Scope Another way of classifying ontologies is to differentiate on the 
basis of scope. The focus on global, shared or standard ontologies is indicative 
of research into ontologies intended to have wide scope. There are good software 
engineering motivations for preferring global ontologies. If it is possible to specify 
an ontology that has broad coverage then interoperability issues are alleviated. All of 
the software speaks the same language and communication is supported as is reuse 
at the component level by nature of the high degree of commonality that exists 
between software modules. The local, or light-weight ontology community prefers 
ontologies that are designed to meet the requirements of a single agent system. Local 
ontologies sacrifice standards and hence reuse and require translation mechanisms 
for interoperability but are less constrained and offer more freedom in design. There 
is no clear front-runner in the ongoing debate between local and global ontologies 
and like most software engineering evaluations it is a case of selecting the appropriate 
solution to meet the particular needs of the system to be built. 

Classification by Existence A subtle but important and often unrecognised classifica- 
tion that can be made is that of existence. This is illustrated by Gruber's definition 
of "commitment" to an ontology as the state an agent is in when it behaves as if it 
had the knowledge level constructs indicated by the ontology without actually requir- 
ing the agent internally represent ontological elements at the symbol level. Rather 
than the word commitment it might also be insightful to consider the agent as being 
ascribed the ontology. This contrasts with the software design community that sees 
ontologies as descriptions of the symbol-level concepts that are manipulated by the 
agent. Some agent languages offer the capacity for a close mapping between the 
symbol level and the knowledge level whereas other agent implementations might 
be characterised as knowledge-level entities by their design only. For Gruber, and 
many interested in ontologies as vocabularies of discourse, agent design is often not 
considered. Ontologies are thought of as the set of concepts about which an agent 
can communicate and the internal processing of the agent is not considered. Or, if 
it is considered, it is secondary to the ontology that is their primary focus. Ontol- 
ogy design is considered as something separate and apart from agent systems design 
and something that deserves special consideration. Hence the consideration of an 
ontology internal to the agent that characterises its internal functioning and is not 
necessarily exposed to other system components is discounted. For the third time in 
this thesis it has been useful to distinguish between ascription and description (the 
first was agency itself and the second was intention). 

Uschold [175] also classifies ontologies according to their subject matter and their 
formality. Obviously ontologies can present knowledge related to different topics [175] and 
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ontologies dealing with different subject matter are likely to be very different but this 
doesn't two impact on the general features of ontologies described here. The formality 
of an ontology is also an important issue. Prom a software engineering perspective the 
level of formality of every artifact is an open question. Mission or safety critical software 
requires a greater degree of formality than a script on a personal web-page. Deciding how 
formally specified software will be is addressed on a project by project basis so although 
the issue is an important one it is not central to a discussion about agent systems design 
but is, like the issue of subject matter, deferred until Chapter 7 when an actual system is 
presented. 

Unifying the above classes can be achieved when it is appreciated that the literature 
primarily sees ontologies as the specifications of the concepts manipulated by a system 
in operation. But ontologies also have use for design as place-holders of knowledge that 
becomes increasingly detailed as the design progresses or as specifications of knowledge 
that act as requirements on the design of the system. As the design matures the ontology 
will be fleshed-out. 

Throughout the design process the ontology changes and evolves, some parts of the 
ontology become specifications for agent communication, other parts might become spec- 
ifications of the internal symbols manipulated by an agent, and still others might define 
the intentions to be recognised when communication fails. 

Ontologies can characterise both the internal structure of an agent and a specification 
of the interface it presents to other agents. These ontologies need not be the same: the 
ontology to which the agent "commits" (to use Gruber's terminology) need not be the 
same as the ontology which characterises its internal operation. This distinction is useful 
for design because it allows for flexibility at the agent interface, it provides place-holders 
for the agent's internal ontology and other system ontologies and a means of converting 
between the two. 

Ontologies should be thought of as specifications of the concepts that characterise 
components of a system and, in general, agent systems require at least two varieties: one 
that characterises the internal state of the agent; and one that characterises their external 
state37. If these ontologies are different, and except for the case where a completely 
global ontology is mandated, they will be, then the complexities of translation between 
the two must be managed. In the following section perception is presented as the ontology 
translation mechanism. 

So in the context of agent design: 

an ontology is a formal specification of the concepts relevant to a 
system or to one or more of its components. 

More specifically there are two types of ontologies that are useful in the context of 
agent design as it has been presented in the thesis so far. 

37 c Systems have been proposed that make use of even more abstract representations. Groupings of 
agents into teams, communities or organisations are an example. For these systems other ontologies will 
be necessary. It is conceivable that a hierarchy of ontologies that matches the abstract groupings of agents 
may be necessary. 
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Figure 4-1: Ontologies characterise both the internals of the agent and the external inter- 
face it presents to other agents. Arbitrating between the two is one of the processes handled 
by perception. This 'view of agents and ontologies allows the design process to consider the 
impact of choices between local and global ontologies; unifies the view of ontologies as vo- 
cabularies for communication with the view of ontologies as systems specifications; and 
provides the designer with a framework for modelling agent systems that incorporates on- 
tological considerations into the software engineering process. 

The agent ontology is the specification of the knowledge that characterises the internal 
structure of the agent. Each agent can have a different set of ontologies if required. 
This knowledge is local, private, subjective, internal, and psychological. The con- 
cepts of this ontology are those that the agent manipulates38. Generally each agent 
will have its own particular ontology. 

The domain ontology is the specification of the knowledge that characterises the do- 
main. This knowledge is global, objective, external, public and social. This ontology 
captures the knowledge about relationships between entities and the knowledge that 
they share. This ontology holds the objective knowledge of the system, agents will 
maintain local subjective partial versions of this knowledge. This ontology is a struc- 
tured aggregation of the interfaces presented by each of the system components. By 
domain here we mean a specific set of concepts that are logically grouped and a re 
shared by more than one agent. Within in any agent system there may be more 
than one domain. 

These two ontologies provide enough flexibility to capture the salient features of any of 
the ontologies classified above. The agent ontology captures any concepts that are internal 
to the agent whilst the domain ontologies capture those concepts that are external to the 
agent. Translation between these two ontologies is the handled by perception. Figure 4.1 
is a refinement of Figure 3.1 to include a reference to these ontologies. 

This section has not considered the language, transport mechanism, communication 
protocol. It is an unproven claim that ontology development should precede a consideration 
of other more detailed design issues like the syntax of the language, the format of the 
knowledge, or particular transport protocols. Any further consideration of these issues is 
beyond the scope of this thesis. 

38If this thesis were not concerned with modelling intelligent agent systems then the agent ontology 
might equally be described as the component ontology. 
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4.2    Ontologies and Perception 

In the Chapter 3 the idea of perception as the mediator between the agent and the 
environment was introduced and used as the starting point of an exploration of the design 
space for modelling intention recognition. In Section 3.4 a case was made for perception 
subsuming communication and acting as a translator between agent communication lan- 
guages. According to this model perception provides a set of knowledge-level statements 
the environment. Or in terms of ontologies, perception is a process resulting in a set 
of statements about the world in terms of the agent's ontology. If the source data is a 
communicated message from another agent then the process is best described as ontology 
translation and if the source data originates in non-agent entities in the environment then 
the process is closer to one of data abstraction. Additionally, as discussed in Section 3.4 
a combination of these process can integrate data from multiple sources. 

The definition of perception given in Chapter 1 can now be refined to include a reference 
to ontologies and to models developed in the previous chapters: 

perception is the process that converts events and structures in the 
environment into statements in terms of the agent's ontology. In- 
cluded in the events and structures are communicated messages from 
other agents. 

Perception takes the data presented to it (some of it in the form of the domain ontology) 
and transforms it into the agent ontology. The agent ontology is therefore partly specified 
by the products of perception. The actions an agent can take, the concepts it manipulates 
as it executes, and other characteristics of the agent will complete the agent ontology. 

Wiederhold has proposed the use of 'mediator agents' to convert ontologies between 
agents [180]. These intermediary agents act as information converters, translating and 
converting inter-agent communication at the ontology level. It is not clear intelligent 
agents are the appropriate mechanism for converting ontologies. Even Wiederhold points 
out that the mediator agents are themselves quite simple and do not undertake intelligent 
interactions. A model of perception is a more natural approach to ontology translation in 
agent systems. 

4.3    Ontologies and Intention Recognition 

In the Chapter 5 intention recognition will be examined in more detail and the role 
that ontologies play will be elaborated in a structured way. It is useful at this point to 
briefly consider ontologies as they have been presented so far in the context of intention 
recognition. 

Consider an implementation of intention recognition that requires an agent to serve 
queries about the nature of its intent. This casts intention recognition as a dialogue be- 
tween agents that must be conducted in an appropriate language. The idea of a commu- 
nicative exchange about intent implies either a shared ontology or a means of interpreting 
between lightweight local ontologies. 

78 



DSTO-RR-0286 

Gruber's distinction in Section 4.1 that an agent can commit to an ontology without 
actually maintaining any symbol-level representation of the concepts that are expressed 
is an important one. An agent that at run time possesses no representation of intent at 
all might still serve queries about its intentions. The agent will give the appearance to 
other agents of having intent, and hence its intentions can be recognised when in fact it is 
simply 'committing' to an appropriately designed ontology and the intentions are a result 
of some translation from its internal state. 

Practically communication about intent is not dissimilar to an agent that visibly labels 
itself in a manner that allows other agents to recognise its 'intention' whether or not it 
actually intends anything. The labels that are applied to agents or other features of the 
environment are, or rather should be, elements of the ontology. 

In cases where intention recognition is performed in what this thesis has referred to as 
the traditional way—by sensing state-data and by inferring increasingly abstract properties 
of another agent until intent can be ascribed—good design still requires an analysis of the 
intentions to be recognised. Analysing and describing the intentions of an agent in a 
way that shows the link between the state-data to be sensed and inferred higher-order 
properties requires a decomposition of intention that can be captured in an ontology. 

However intention recognition is delivered, it is necessary prior to design to have clear 
descriptions of the intentions that are to be recognised. These descriptions will allow in- 
formed decisions to be made about the exact requirements of the system and how intention 
recognition should be modelled. 

Ideally, as part of an analysis of the system performed prior to design, the intentions 
of each of the agents should be described and documented. It is clear, of course, that 
the agents might not have any explicit representation of intent in the operational system 
but an intentional description at design time is necessary for intention recognition to 
be properly considered 39. Capturing and structuring knowledge about intention is best 
handled through the construction of ontologies that decompose intentional descriptions 
into increasingly less abstract forms. These decompositions provide the designer with the 
descriptions of the information that characterises ontologies at different levels and support 
choices about the delivery of intention recognition. It is worth making the point here that 
a description of an intention as it is executed is quite a different thing to the description of 
an intention as it is to be recognised. The two descriptions can be the same but they need 
not be, and in general they won't be40. Suchman explains this in the context of situated 
planning: 

"For psychological studies, the crucial processes are essentially cognitive, located in- 
side the head of the actor, and include the formation and effect of beliefs, desires, 
intentions, and the like. For social studies, the crucial processes are interactional 
and circumstantial, located in the relationships among actors, and between actors and 
their embedding situations. In either case, the problem of meaningful action is in- 
herently subject to many ascriptions of meaning or intent, while meaning and intent 

39Though outside the scope of this thesis, intentional descriptions of agent systems support good design 
even if intention recognition is not a consideration. 

40The system described in Section 2.3.3 allows for the same descriptions that generate intentions to be 
used to recognise intentions. 
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are expressible through an indefinite number of possible behaviours. Whether the final 
arbiter is taken to be private psychological processes, or accountability to the public 
world, the question to be resolved—what constitutes purposeful action and how is it 
understood—is the same."—Lucy Suchman [165] 

At least two types of intentional description are possible. One that characterises the 
intention to be enacted and one that characterise that same intention for the purposes of 
recognition. While only the latter is within the scope of this thesis it is important to note 
that the distinction exists. In practice it has been found that describing the intentions 
to be enacted is a natural pre-cursor to describing them as they will be recognised and 
so an ontology of intentional activity becomes an important step in modelling intention 
recognition. 

The same observed actions, the same state of the world might be interpreted by agents 
as resulting from a different intent. And, depending on their local situation and within the 
confines of their context they may both be right. The fact that actions can be interpreted 
by different agents in different ways provides the central point of a strong argument in sup- 
port of local ontologies. Furthermore, at least as far as it pertains to intention recognition, 
there is a case to be made for the ontological elements to reflect the purpose to which the 
knowledge will be put. It clearly helps intention recognition if the set of concepts about 
which the agent has knowledge reflect a purposive, action oriented view of the world. If 
the 'Saga of the Rat and the Drain-Pipe' (see Section 3.3.2) is recalled it is clear that 
a local, purposive labelling of the world has advantages over a global objective labelling. 
From the perspective of Peter's less than courageous interaction with the rat a label placed 
on the drain-pipe that reads 'place-where-rats-hide' better facilitates intention recognition 
than the more obvious, more objective, but ultimately less useful 'drainpipe'. 

What is needed is a way of analysing an agent system so that agent behaviours are 
expressed in terms of intentions. And then a way of decomposing intent into progressively 
more detailed descriptions that are relatable to the intentions as they are executed, and 
as they are recognised. Ontologies can capturing these decompositions of intentions and 
structure and represent them in a manner suitable for supporting software engineering. 
Chapter 7 provides a brief account of one possible way of performing an intentional analysis 
but the detail is beyond the scope of this thesis. This idea has been developed in more 
detail by describing intentional analysis as an important step in the analysis and design 
of agent systems [70]. 

4.4    Incorporating Ontology Design into the 
Software Engineering Process 

This thesis takes a counter-view to Gruber when he states that: 

"the success of these efforts depends on the development of an engineering discipline 
for ontology design, akin to software engineering for conventional software. "—Gruber 
[63] 
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Rather than see ontology development as a discipline in its own right it is more natural, 
at least for the purposes of agent design, to incorporate it into the practice of software 
engineering. The need for ontologies stems from the increasingly abstract nature of the 
specifications associated with software. When abstraction is used to manage the com- 
plexities associated with software it creates challenges for the designer. The advent of 
object oriented methodologies began the move toward abstract structured software speci- 
fications. Even if it is not explicitly stated object oriented analysis is partly about ontology 
design [6]. Agent oriented approaches utilise more abstract concepts than object oriented 
analysis and design and so ontologies become even more crucial as a means of structuring, 
representing, and managing those abstractions. 

Though not always badged as 'ontology design' software engineering is developing tech- 
niques to manage the knowledge engineering issues that pertain to software engineering. 
Domain modelling, an emerging pre-cursor to requirements modelling, is an important 
software engineering activity that establishes and structures the background knowledge 
necessary to construct a system. The tools of software engineering are also increasingly 
being used for knowledge engineering and for designing and representing ontologies [36]. 

Modelling agent systems requires structuring, representation, and documentation of 
the applicable knowledge and the processes by which that knowledge is transformed as it 
flows through the system. Agents are by their very nature knowledge-level entities and 
their designs should reflect this by maintaining knowledge-level descriptions. Agent theo- 
ries, architectures and languages are to be preferred if they maintain as much 'knowledge- 
level' focus as is possible. If possible agents should function with, communicate with, 
and manipulate representations and structures that match their knowledge-level design 
descriptions. 

Ontologies are one way of providing the structured representations of knowledge re- 
quired by designers of agent systems. Ontologies provide a structuring mechanism that 
can index knowledge about a domain in a manner suitable for software engineering. 

Simply there is no 'one true ontology' that can systematically specify a set of concepts 
useful for all domains and all purposes. All ontologies, however global they were intended 
to be, will have practical limits to their scope. 

The types of ontologies described in Section 4.1 are suitable for capturing and repre- 
senting the knowledge required for agent system development. These ontologies are not 
necessarily completely specified prior to the commencement of system development and 
their specification becomes one of the core activities in the design process. So ontologies 
are not simply knowledge specifications that are created and exist apart from the software. 
They are place-holders for knowledge that are elaborated throughout the design process. 
Ontologies specify the knowledge both inside and outside the agent and perception is the 
process that transforms between the two. An explicit model of perception allows a degree 
of freedom in the design of agent systems and the ontologies provide place-holders for the 
knowledge as it is elaborated during design. 

For example, Figure 3.11 provided a high-level description of some of the processes 
undertaken as a part of agent-system design. Part of this iterative process considers the 
ontologies of the agent systems. It must be recognised that if an ontology is not specified 
as part of the agent system development then it exerts influence over the design by virtue 
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of the constraints that it places over the agent model. To understand, evaluate and trade- 
off the constraints imposed by a reused or global ontology requires a design model of 
an agent system that includes ontologies and makes explicit the constraints that they 
impose. If the ontologies are specified as part of the system development then a design 
model is required that indicates the dependencies and links between the ontologies and the 
system components in a way that facilitates design decisions. Thus the ontology design 
is intermingled, quite appropriately, with the software system design. If the ontology is 
fixed then it becomes a constraint over the design of the system. If not then the ontology 
will be specified by considering the requirements of the various system components and 
the properties of the domain. 

4.5    Summary 

Every software system, indeed every system, can be characterised, post-hoc, by an 
ontology. In some systems the ontology is more obvious than in others. In some it might 
be more clearly expressed in the design than it is in the executable system and in some it is 
barely visible at all. How seriously ontologies are teated during design depends ultimately 
on the importance of structuring and representing knowledge to the functioning of the 
system. Software that makes use of abstraction as a means of dealing with complexity 
is more likely to benefit from a careful consideration of knowledge structuring and hence 
require ontologies. If an ontology is pre-specified and mandated then it ought to be 
considered as a constraint over the agent-system design. If it is not pre-specified then it 
ought to be considered a product of the system design. 

Two ontologies are useful for characterising agent systems. One that has the scope 
of the domain and expresses the global concepts that are useful across and between com- 
ponents and an agent ontology that has scope of the agent and expresses the concepts 
local to the agent. Perception mediates between the agent and the rest of the system by 
translating between these ontologies. 

Ontologies can structure knowledge of intentions enabling the modelling of intentional 
action and the modelling of intention recognition. That these two processes are differ- 
ent advocates local ontologies and, if local ontologies are preferred, then a translation 
mechanism is required—perception fills that role. 

Historical Anecdote: What is the Ontology? 

When the question "What is the ontology?" is asked of an existing system the answer 
is more or less interesting depending upon the match between the properties of the system 
and the interests of the questioner. When this question was asked repeatedly by Profes- 
sor Leon Sterling (a supervisor of this research) it was clear that the answers that were 
forthcoming where often unsatisfactory. When I personally failed to provide satisfactory 
answers to this question on several occasions about several different agent systems with 
which I was intimately acquainted it became clear that a fundamental issue had emerged. 
Ultimately the solution was to treat the question as one which did not demand a direct 
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answer but which prompted further questions: "What would it take for me to be able to 
answer the first question clearly and accurately?"; or "How might I design an agent system 
in a manner that allowed the first question to be answered?". The question led ultimately 
to this chapter by prompting a consideration of the role ontologies play in the development 
of agent system design and the role of agent system design in the development of ontolo- 
gies. In this light the question "What is the ontology?" becomes highly significant. Not 
because it demands a specific answer but because it is one of the questions that should be 
considered by the designer during the development of complex software systems. 
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Chapter 5 

Modelling Agent Intention 
Recognition 

From Get Smart circa 1967 

Max: " What you 're saying, Chief, is now that we know how, all we have to do is find 
out who, when, and why." 
Chief: "No, forget about where.  When we find out about who, we '11 know where." 
Max: "Well, how will how tell us where?...You see all that you've told me is that we 
know how, but we don't know who, when, or where. So that tells that we don't know 
anything." 
Chief: "What?" 
Max:  "Well, we know who and that doesn't tell us when, so why should how tell us 
where?" 
Chief: "Max, you're driving me crazy." 
Max: "How?" 
Chief: "Don't say that word." 
Max: "Why?" 

This chapter presents a general framework for modelling intention recognition in intel- 
ligent agent systems. It builds on, and makes use of, the insights from Chapters 3 and 4 
to develop architectures that provide many possible design for implementing intention 
recognition. 

In Chapter 3 the influence that a model of perception can play in simplifying the design 
of an agent system was explained and a number of options for bridging the abstraction gap 
presented (Figure 3.10). It will be seen that the models of intentional behaviour and 
intention recognition that are adopted result in an interpretation of intention recognition 
as a problem that is similarly simplified. The architectural designs that result are presented 
here in the style of the cognitive patterns literature and then in a more mature form as 
agent software design patterns in Chapter 6. 

Section 5.1 clarifies the modelling of intention recognition by expressing it as a software 
engineering problem that will be solved by examining the system constraints in light of 
the assumptions and the adopted models. It is not the aim of this thesis to provide a 
detailed description of any particular implementation of intention recognition, but rather 
a broad framework for characterising and selecting from possible designs. 
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The models of agency, of intentional behaviour and intention recognition developed in 
Section 5.2 are kept as simple and as general as possible so as not to unduly restrict the 
possible architectures that are examined. 

Section 5.2.4 briefly describes the analysis of intention in the context of modelling 
intention recognition and clarifies the role that ontologies play in documenting the inten- 
tional descriptions of the agent system. Some form of intentional analysis is a prerequisite 
to selecting an appropriate design but is outside of the scope of the thesis. 

Section 5.3 develops the six design possibilities that are a direct result of combining 
the modelling choices of Section 5.2 with the model of perception presented in Chap- 
ter 3. Section 5.4 concludes with a discussion of the principal influences over the choice of 
architectural design. 

5.1    Clarifying the Intention Recognition 
Problem 

This Chapter, and indeed the thesis, is an attempt to answer the question "How should 
intention recognition be modelled?" from a software engineering perspective. The diversity 
of agent languages, technologies and applications, renders any general solution to imple- 
menting intention recognition futile. Broad applicability will result only from descriptions 
and evaluations of system designs. Consequently, the thesis focusses on modelling issues 
surrounding the design of intention recognition. Implementation details from a series of 
agent systems are presented in Chapter 7, but this to show the application of the archi- 
tectural designs and not to explore the science surrounding a particular implementation 
technology or the soundness of a particular theory. 

If the question "How should intention recognition be modelled?" is asked then it 
immediately begs a number of important questions and will receive a different response 
from a philosopher, a psychologist or a computer scientist. Unfortunately the answers to 
these sorts of modelling questions often presuppose solutions, make undeclared assump- 
tions or are biased toward particular solutions that limit the applicability of any solution 
to the practical task of software engineering where scientific or philosophical soundness 
play second fiddle to the pragmatics of developing practical applications. 

If the question is asked of a software engineer then the answer should be of the form, 
"It depends upon the software requirements." To the engineer the techniques of AI, 
the theories of psychology, or the technologies of computer science are all tools to be 
used in developing software. There is no universally best solution, rather there are a 
range of possible solutions with an appropriate choice governed by the particular system 
requirements. 

This thesis provides an approach to modelling intention recognition with a focus on 
software engineering. Specifically the aim is to provide architectural patterns that provide 
options for modelling intention recognition when developing agent systems. So as not to 
commit to a particular technology, architecture, agent platform, language, or theory, the 
models are kept as general and widely applicable as possible. Presented here is a framework 
for modelling a range of possible designs for implementing intention recognition.   This 
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allows the design space to be characterised in a way that provides solutions appropriate 
to the requirements of the system. 

Informing the intention recognition design process requires the software developer to 
describe the intentions that are to be recognised. These descriptions (together with other 
pertinent system requirements) can then be analysed to guide decisions about the design 
of intention recognition. 

Providing a framework for modelling intention recognition in agent systems requires 
that the problem be presented in a manner general enough to cover a useful range of 
application domains and allows the consideration of a range of possible solutions. To 
this end high-level models of agency, intention, and intention recognition are constructed. 
These are then combined with the results of Chapters 3 and 4 to produce a set of six 
architectures. 

5.1.1    Assumptions 

This thesis is predicated on a number of important assumptions that are presented 
here. Some of these assumptions limit the applicability of the designs or act as important 
guides to future utilisation. Some are a reiteration of those that were presented when the 
thesis was introduced and some are a result of the findings of subsequent chapters. They 
are all presented here for completeness. 

5.1.1.1    Software Engineering is Important 

Software engineering is an often neglected aspect of agent development. This thesis 
is concerned not with the development of an agent theory, an agent language, or with 
technology that will be used by agents. Rather it deals with the development of agents 
for practical applications. It is assumed that these agents will be developed according 
to a process and that the usual software engineering activities will be present. Agent 
researchers often undervalue the role that software engineering can play in informing the 
agent development. When research is transitioned into industry it will inevitably forced 
to integrate with software engineering practices. If those practices have the capacity to 
simplify and inform the research then they should be leveraged early. 

5.1.1.2    Intention recognition is (in part) an agent architecture problem 

Intention recognition can be implemented, or at least facilitated, by selecting an ap- 
propriate agent system architecture. Most implementations of intention recognition fail 
to consider the aspects of the system that lie outside of the agent. If the insights from 
Chapter 3 where unconvincing then further examples are presented in this chapter. Se- 
lecting an appropriate architectural design can ameliorate implementation problems. The 
selection of an appropriate architecture becomes a standard software engineering activity 
when the options are presented in the form of patterns. 
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5.1.1.3 Agent System Design Drives the Selection of the Architecture 

There is an assumption that the design process is free to trade-off requirements and 
that a particular solution has not been mandated. Non-functional requirements such as 
performance, fidelity, simplicity, maintainability can influence the particular design chosen. 
A particular approach to intention recognition might be rejected on the grounds that it fails 
to meet performance requirements even though it is elegant, cognitively plausible, sound 
and complete, and well specified. The design process considers intention recognition as 
just another functionality to be added to the agent system and not an end in and of 
itself. The task is to build an agent capable of intention recognition and not to build 
the technology required to implement, intention recognition. This distinction more than 
any other marks this thesis as different from most other agent research—it is not about 
developing theories, architectures, or languages: it is about developing agents. 

5.1.1.4 Patterns are a Valuable Resource for Agent Developers 

Published solutions to the problem of intention recognition focus on a domain, a lan- 
guage, or an implementation. As such it is often difficult to translate the successes into 
other domains. Reusing, or at least learning from, the experiences of others requires more 
general higher level descriptions of agent systems that transcend issues such as language 
dependence. To this end agent researchers should be encouraged to publish the aspects 
of their systems that are likely to be widely reusable. These are likely to take the form 
of patterns in the style of the object oriented software community. Unless there is stan- 
dardisation among agent languages the patterns that will have the greatest scope for reuse 
will be those that focus on the architecture of the agent system (that is the relationships 
among the agents and between the agents and the environment). 

5.1.1.5 Agents Should be Knowledge Level Entities 

Agents should manipulate more abstract concepts that other types of software41. True 
in general, but true strongly for intelligent agents. That is not to say that agents won't 
occasionally make use of low level data but the tendency should be for the agent designer 
to prefer more abstract representations. In Chapter 4 it was shown that an agent ontology 
can be developed as part of the software engineering process and that an ontology plays a 
key role in defining the agent. Perception was presented as the means by which the agent 
translates any available data into the form defined by its ontology. 

5.1.1.6 Agent Design Requires an Explicit Model of Perception 

In order to maintain the preference that an agent manipulate higher-order concepts it 
is necessary to convert from the data that is available into the form preferred for the agent. 
An explicit model of perception provides the appropriate means of arbitrating between the 

""Recall Nwana's claim from Section 2.1 that an agent should manipulate knowledge level concepts. It 
was an assumption of this thesis that an agent is a knowledge level entity that should manipulate more 
abstract concepts than other types of software. 
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design of data representations internal to the agent and those that are externally found in 
the balance of the system. 

5.1.1.7 Designable Environments and Designable Agents 

As discussed in Section 3.3 a surprising number of agent environments are at least 
partially designable. Furthermore some of the architectures presented assume that other 
agents can be directly modified or extended to support intention recognition. This as- 
sumption is not commonly made by researchers investigating agent behaviours. Or, more 
correctly, it is not made explicit. Systems tend to emerge with important design decisions 
hidden by particular theories or architectures. 

5.1.1.8 Explicit Internal Representation of Intent 

The agent who's intent is being recognised need not have any explicit internal repre- 
sentation of intent. Some agent languages model intention but most do not. The BDI 
languages are a good examples of a language with a strong explicit model of intent within 
the language itself and some have argued that SOAR has some form of implied repre- 
sentation of intent or at least provides the constructs necessary to model intention. An 
internal representation of intent can simplify intention recognition but the requirement 
that the agent who's intent is to be recognised actually maintain some representation of 
intent would be unrealistically strong in a thesis seeking generally applicable solutions. 
From a software engineering perspective there is no problem to ascribing intent to a soft- 
ware entity that clearly does not intend. Concerns about psychological or philosophical 
are addressed by Dennett [39]. 

5.1.1.9 Single Agent 

Though intention recognition is inherently multi-agent this thesis will not deal with 
intention recognition issues associated with more complex social systems. Sonenberg and 
Tidhar [162] provide insights into some of these issues. Issues of ambiguity of identity, and 
of recognising joint intentions are left for future work. In Chapter 8 this issue is briefly 
revisited. 

5.1.1.10 Intentions Well Understood 

In order to make appropriate design time decision about the nature of intention recog- 
nition it is important that the intentions that are to be recognised are well understood and 
specifiable. Some process for documenting and analysing intentions is a necessary part of 
making appropriate design decisions. 

5.1.1.11 Intention Recognition Part of Larger Functionality 

The agent is expected to exhibit a wide range of behaviours and intention recognition 
is just one of those. Research can often focus too closely on a particular type of behaviour 
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resulting in agents that, are single minded. Intention recognition must fit within a larger 
context and so any supporting methodology or technology must be seen as part of a larger 
whole. 

5.1.1.12    Heterogeneous Agents 

Many agent systems are heterogeneous. Agents are not necessarily architecturally 
similar. They do not have access to the internal mental attitudes of the other. Nor do 
they classify the intentions that they recognise in the same manner as the ones that they 
execute. When one agent intends 'to seek information about cats' another agent might 
recognise that intention as 'to access web pages'. Both descriptions are correct—one is 
for guiding action, one is for recognition. The description that an agent might place give 
to its own intentions might be unsuitable for another agent. Simply, they do not share 
an ontology. The intention recognition process must deal with this if required. This 
specific problem in intention recognition is synonymous with the more common problem 
of communication between agents that do not share the same ontology. 

5.2    A Modelling Approach 

To develop a framework for modelling intention recognition in intelligent agent systems 
it is necessary to first provide characteristic models of agency and intentional behaviour. 
The models are not detailed, they are deliberately high-level and general. They are not 
meant as formal definitions of agency, or of intentionality, but high-level models that assist 
in the development of design at the architecture level. As aids to architectural design the 
internal detail is less important than the structural form. 

5.2.1    The Agent Model 

In Chapter 1 the following definition was given: 

an agent is an autonomous entity situated in an environment that it 
can perceive, and in which it can act. 

This description is applicable to many existing agent systems, perhaps even most 
agent, systems. When the further requirement that the agent is intelligent is stipulated an 
additional component, here called reasoning is added to the agent. Associated with the 
reasoning module is the agent ontology42. 

The detail of this definition has been dealt with previously (Section 2.1) but there are 
a couple of salient points that require highlighting. 

As yet the agent model includes no representation of intention (this will be introduced 
in the following section).  In general there is no requirement for an intelligent agent to 

42r 
The agent ontology is a documented part of the agent model providing constraints over the design or 

a place holder for the iteratively developed design of the ontology (See Section 4.4) 
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utilise intentional reasoning. An agent that implements a model that includes some form 
of explicit run-time representation of intention might make some of the implementation 
choices simpler. Intention is seen as a characteristic of a particular implementation and 
not a fundamental property of agency. The real value of this model of agency lies in the 
separation of perception from reasoning and the association of reasoning with the agent 
ontology. This emphasises the importance of maintaining the knowledge-level status of 
the agent in the face of a requirement to interface with a system that uses far less abstract 
concepts. This is particularly relevant to intention recognition. Demarcation decisions 
between reasoning and perception are critical to good agent design and are an important 
influence over the models presented. The credibility of the models rely on the acceptance 
that an explicit model of perception as presented in Chapter 3 is a valuable concept for 
agent development. The need for the explicit model of perception depends in turn on the 
assumption that an agent should be presented with more abstract representations of data 
than those commonly found in its environments. This is not to preclude the ability of 
an agent to reason with low-level data but simply to highlight the importance of making 
appropriate design decisions and to provide a means of making them. 

5.2.2    A High-Level Model of Intentional Behaviour 

The modelling approach adopted is to describe intentional behaviour in three increas- 
ingly detailed, less abstract levels (See Figure 5.1): 

The intentional level describes the intentions of the agent. It characterises these in 
terms of desires, beliefs, goals, plans, and other high-level intentional states. These 
intentions give rise, in a directly causal way, to activities. 

The activity level describes the activities and the actions undertaken by the agent. 
These actions are a direct result of the intentional state of the agent. They might be 
considered as the set of actions that an agent can take. The tactics that might be 
adopted, the plans that might be selected, the effectors that can be operated, or the 
functions that might be called. These activities can be considered a decomposition 
of intention as well as a more detailed description of it. 

The state level describes the agent by reference to its externally accessible features or 
features of the wider environment that are indicators of the agent's state. This is the 
description of the agent as it appears to other agents in its environment. Whereas 
intention is an internal mental state of the agent, this level describes the normally 
visible external appearance of the agent. 

These three levels can be related to the three levels of Dennett's Intentional Stance [39] 
and to the three levels of human processes described by Leontiev [107]. In any case the 
choice to represent intentional behaviour in this way is somewhat arbitrary and there is 
little to impede the adoption of a different structure within the methodology proposed 
here should an alternate model prove advantageous. 

At this stage the model makes no comment about the processes that cause intention 
to manifest certain activities or the process by which activities influence the state of the 
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The intentional level describes 
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The Activity level describes 
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effects its actions have in the 
environment. 
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Figure 5.1: The intentional behaviour of the Intending Agent is modelled as a tri-level 
decompositional description capturing the salient characteristics. Intention recognition is 
a related, subjective (from the Recognising Agent's perspective), reversal of this process 
that captures the features necessary for supporting intention recognition. 

environment. This is in the detailed design of the particular agent. In this respect the 
model is little more than a description template. Much of the literature that describes 
the semantics of intention in agent systems is directly concerned with the detail of the 
manner in which intentions result in actions [148, 166, 153, 10]. Any of these models 
might be superimposed onto this description template to provide a formal specification of 
the process if it is required. It is a feature of this model that it remains agnostic with 
respect to the execution semantics of any adopted model of intention. 

A model of intentional behaviour is a necessary precursor to a model of intention 
recognition4,1. The agent literature contains many different views of intentions. Producing 
yet another model of intention as a competitor to these is unproductive. Each of these 
models, and others, has value in certain contexts. A software engineering model that spans 
the breadth of these models and allows the developer to describe and model systems before 
committing to a particular model of intention (or intention recognition in the context of 
this thesis) has more value. Simplicity and coverage are the hallmarks of the model of 
intention presented. 

Modelling agent behaviour in this way serves two purposes: first, and most importantly 
for this part of the thesis, it supports a model of intention recognition that will eventually 
lead to the development of a set of design patterns; second, it can be used in the future as 
a description template for documenting and analysing agent systems that are to be fitted 
with one of the design patterns (See Chapter 6). Thus it is a model that gives insight 
into intention recognition in order to construct a suite of architectural designs and it is an 
analysis model that can be completed to inform the design of a particular agent system. 

It might be argued that this is not strictly true. A theory might be posited that suggests that intention 
recognition does not strictly require a model of intention. Though it is not clear how this might work, 
a subsumption architecture such as that proposed by Brooks, might be argued as having the capacity to 
model intention without any representation of intent. 
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5.2.3    A High-Level Model of Intention Recognition 

A direct consequence of the model of intentional behaviour adopted is the model of 
intention recognition shown beside it in Figure 5.1. Intention recognition is modelled 
by taking a subjective view of the features that characterise the intentional behaviour. 
For each intention to be recognised it is necessary to describe the features that support 
recognition. These features occur at the same three levels but their purpose is now to 
support recognition and not to describe execution. The two parallel descriptions are 
obviously closely related but there is no requirement that they share concepts. The features 
that characterise a an intention as it is executed might have little commonality with those 
that support recognition. 

Intention recognition requires the recognising agent to acquire or build a representation 
of the intent of the other agent. The data that supports the building of this representation 
is intuitively (and commonly) acquired from the sensing of the changes in the environment. 
Based on the model of intention presented in the previous section there are three types of 
data that are potentially available to support intention recognition (See Figure 5.1): 

Sensed state documents the states that the agent can observe directly in the environ- 
ment and the changes that are indicators of the activity of other agents. 

Recognised activities describes the activities that are performed by an agent as they 
are recognised by another. Descriptions of the activities as they are recognised 
will include references to the states of the environment that are indicators of those 
activities. 

Recognised intentions describes the intentions as they are recognised. Typically these 
will be described as compositions of the activity level descriptions, as sequences of 
recognised actions or observed events. 

Intention recognition commences with the intention of the intending agent and con- 
cludes with the recognised intention in the recognising agent. Through a path, as yet to be 
defined information about intent flows from the top left hand box of Figure 5.1 to the top 
right hand box. The end goal of intention recognition is to arrive at some description of 
the intent of another agent by processing available information. As the recognising agent 
undertakes recognition it might gather and assimilate evidence at any of the three levels. 

Six possible paths exist from the description of intention in the intending agent to the 
to the recognition of that intention in the recognising agent. At the very highest level 
the possibilities that exist for modelling intention recognition are therefore the six options 
shown in Fig. 5.2. 

So the model of intention recognition takes the model of intention presented in Sec- 
tion 5.2.2 duplicates it, albeit in a subjective form, in the Recognising Agent and provides 
a number of possible pathways for the description of intent to be mapped to the recognition 
of intent. 

If intention recognition is considered as an abstraction gap problem similar to that 
addressed in Chapter 3 then the possibilities available for traversing the sixth pathways 
are those exactly those that were suggested by the alternatives that were presented for 
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Figure 5.2: Six possible paths exist that commence with the intention in the intending agent 
and conclude with the recognition of the intention in the recognising agent. These pathways 
are the basis for the development of the design architectures presented in Section 5.3 and 
then in a more comprehensive format in Chapter 6. 
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modelling perception. Applying the model of perception of developed in Chapter 3 leads to 
the designs for intention recognition that are presented in the following section. Modelling 
intention recognition in this manner allows for the consideration of many alternatives and 
the detail of the designs that follow in Section 5.3 is partially provided with reference to 
the techniques proposed in Chapter 3 for simplifying the provision of perception. 

5.2.4    Intentional Analysis 

This section makes two claims. The first is that for modelling intention recognition it is 
necessary, prior to any design decision, to document and analyse the intentions manifested 
by agents in the system. This analysis should include both an objective examination of 
the intentions that describe the behaviour of an agent and then a series of subjective 
interpretations of that intention as it is recognised by others. This claim is so intuitively 
obvious that it needs little justification. If intention recognition is to be modelled intentions 
must be understood documented, and presented in a way that supports design. 

The second claim is that the first part of this process, documenting the behaviour of the 
system in an intentional way, is useful precursor to the development of any agent system, 
regardless of whether or not intention recognition is a functional requirement. This claim 
is less intuitively obvious, but if justified means that intention recognition can leverage 
off the intentional analysis that would be undertaken as a normal part of the analysis of 
any intelligent agent system. This claim is left as an unsupported hypothesis for future 
research though supporting evidence is available in the literature [70]. 

The purpose of an intentional analysis within the scope of this thesis is twofold: to 
provide intentional descriptions of the behaviour of agents; and to provide a description of 
the intention recognition process. This corresponds to documenting the six boxes shown in 
Figure 5.1. Describing the behaviour of an agent system in an intentional manner (filling 
out the left hand boxes) is quite a different task to describing the recognition process 
(filling out the right hand boxes). 

In the simplest possible terms, and conforming to the models of intentional behaviour 
presented earlier, an intentional analysis might be considered as the activities related to 
answering the following sets of questions: 

• What are the intentions to be executed? 

• What activities result from these intentions? 

• What states of the environment are a consequence of these actions?? 

• What are the intentions to be recognised? 

• What activities will indicate that the agent has theses intentions? 

• What states indicate that the agent is engaged in these activities? 

or adopting a bottom-up approach. 
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• What states can I perceive? 

• What activities are indicated by these states? 

• What intentions are indicated by these activities? 

It should be noted that the model of intentional behaviour presented in Section 5.2.2 
was biased heavily toward supporting intention recognition and may not be appropriate 
for documenting intentional behaviour in agents for other purposes. 

Any detailed consideration of intentional analysis is outside the scope of this thesis44 

but a brief account will give pointers toward future research. The process of specifying, 
describing, and documenting the intentions to be recognised is a part of intention oriented 
analysis [70]. Techniques for eliciting the intentional descriptions from human subjects 
are well documented [181]. Others, such as Dennett [39], propose less structured and 
well defined approaches for what might loosely be described as an intentional analysis of 
non-human systems. There are many methods for analysing the intentions in a system. 
A discussion is beyond the scope of this section but Cognitive Task Analysis [181] and 
Cognitive Work Analysis [152] are examples. As a minimum, the analyst can resort to folk- 
psychological intuitions and adopt the intentional stance. More recent trends in software 
engineering are leading toward standard tools and techniques that are suitable for this type 
of analysis [155]. Use cases are a technique from Object Oriented Software Engineering 
(OOSE) [82] that have been adopted by the mainstream object oriented community and 
are now supported by the UML and many case tools. Use cases were introduced to 
enable the specification of requirements in systems where the interactions between the 
user and the system were complex. That a use case analysis commences by considering 
scenarios sets the it apart from other 00 techniques. Scenarios allow the future user of 
the system to visualise the expected interactions and to describe the system in terms of 
the activities that it must support and the functionality that it must provide. Heinze 
and Papasimeon have shown that a Use Case analysis can be successfully adapted for 
specifying requirements in agent systems [73, 59]. There is a strong link between use cases 
in object oriented analysis and design and descriptions of intentional behaviour in agent 
systems. The diagramming techniques of the UML are appropriate for documenting the 
intentions of actors and agents in a software system. In Chapter 7 an example of the use 
of the UML in capturing intentional descriptions for the purposes of modelling intention 
recognition is provided. 

5.3    Designs for Intention Recognition in Agent 
Systems 

In Figure 5.2 six pathways from intention to recognition were presented. These path- 
ways were revealed by considering the possible options resulting from the three level de- 
compositional model of intentional behaviour and a corresponding model of recognition. 
The options for moving from a description of an intention in one agent to recognition in 

440ne of the assumptions in Section 5.1.1 was that the intentions of the system were well understood. 
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another become software architectures when considered in the light of the four alternative 
ways of bridging the abstraction gap summarised in Chapter 3 (see Fig. 3.10). The lessons 
of Chapter 3 provide the first clues about the nature of the processes that transform data 
between the agents and within the recognising agent. The thesis stays mute with respect 
to the processes within the intending agent. Not only are those processes heavily im- 
plementation dependant and well described in the literature they are irrelevant for the 
purposes of intention recognition45. 

All intention recognition commences with the intent of the Intending Agent and con- 
cludes with the recognition of that intent in the Recognising Agent. The process by which 
intention recognition occurs depends upon the particular design chosen. For each of the 
possible architectural designs there are several variants that depend on the particular 
implementation details. The basic architectures are briefly described below (See also Fig- 
ure 5.3) and then in a more detailed manner in the following chapter. 

The designs are presented using the notation and style of the cognitive patterns litera- 
ture of Gardner et. al. [55]. This is done for four reasons: at this stage they are more like 
cognitive patterns than software patterns; they can be related to theories of psychology; 
they are better explained without the necessary detail required for software engineering; 
agent software design patterns are provided in Chapter 6. 

Design Option 1 This corresponds to the case that is most commonly referenced in the 
literature, and has been described elsewhere in this thesis as 'sense-and-infer'. The 
intending agent executes its intentions, its actions, and ultimately influences the 
state of the environment. This state is sensed by the Recognising Agent and the 
higher order properties of actions and then intention are successively inferred. As 
mentioned earlier there is a series of variants available that depend upon the specifics 
of the implementation. For example, although the figure shows the Intending Agent 
as actually executing intentions there is no requirement for this to be the case. In 
fact the only interaction between the Intending Agent and the Recognising Agent 
is via the state as it is reflected in the environment and so the particular internal 
detail of the Intending Agent is irrelevant to this particular design. As for all of the 
design options here there is more detail presented in the following chapter. 

Design Option 2 Design option two short-circuits the recognition process by providing 
the Recognising Agent with direct access to the descriptions of the Intending Agent's 
actions. This gives the Recognising Agent a description of the activities of the agent 
with which to infer intention. This architecture required that the Intending Agent be 
considered as part of the design process as its internal state must be made available 
and, if it is in an inappropriate form, it may need to be augmented or labelled with 
suitable representations. 

Design Option 3 Design option three appears to be the simplest of all. Rather than 
conduct any sophisticated reasoning the Recognising Agent is given direct access to 
the intentions if the Intending Agent. If the Intending Agent manifests no explicit 
internal representation of intent then one must be provided. This is referred to as 

45More correctly, they are irrelevant for intention recognition given the assumptions that underpin this 
thesis. It is not inconceivable that the dynamics of executing intentional behaviour and not just a reference 
to the agent state could influence the design of intention recognition. 
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'labelling', i.e. the agent is labelled with a representation of its intent specifically 
for the purposes of supporting intention recognition. If the Intending Agent actually 
has intention then the recognising agent might be given direct access to some version 
of this. Perhaps the access is given via communication, that it the recognising agent 
asks for a description of the intent. Perhaps the intention label is multi-valued and 
each agent that views the label gets its own specific information. In this fashion, 
although it is a simplification of the intention recognition process, the act of labelling 
the intending agent with a description of intent can be quite sophisticated. 

Design Option 4 Design option four is an implementation of 'direct perception' or eco- 
logical perception (See Section 2.4). By conducting intention recognition completely 
within the perception module the agent reasoning is supplied directly with recogni- 
tion of intent. This supports the preservation of a highly abstract agent ontology. 

Design Option 5 Design option five is a compromise that utilises direct perception for 
the first stage of the intention recognition process and inferencing for the second. 

Design Option 6 Design option six is similar to option 2 but makes use of direct per- 
ception to convert the sensed actions into intentions. 

5.4    Constraints on the Design of Intention 
Recognition 

In the following chapter these designs are presented as software patterns and the ap- 
plication and implementation of these software architectures is described in detail. Prior 
to the elaboration of the designs patterns it is necessary to consider some of the design 
constraints that will influence the applicability of these designs. 

Legacy code Many agent systems of any scale are built on top of legacy code. From the 
introduction of mobile information agents to the web, or the addition of assistant 
agents to existing systems the environments in which agents operate are often in 
existence. The post-hoc modification of these environments is often too costly to 
justify. This leads to compromises in the agent design necessary to deal with a less 
then ideal environment. 

Design Influence on the Environment Often the environments in which agents must 
operate a designed and developed separately and apart from the agent development. 
This might be due, as in the case of the internet, to the agent being developed to 
operate in someone else's environment. Or it might be due, as is the case in some 
military simulations, that the teams that develop the computer generated forces are 
independent of the teams that develop the rest of the system components. In cases 
where the agent development cannot influence the design of the rest of the system 
the design choices available for implementing intention recognition are diminished. 

Explicit Internal Representation If the Intending Agent makes use of explicit repre- 
sentations of intention or action then these might be utilised to assist the modelling 
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Figure 5.3: Many options become are available in the provision of intention recognition. 
Direct perception allows intent to be perceived directly without the need for the inference. 
Labelling the intending agent with either its actions, or intentions, allows sensing to be 
performed at higher levels of abstraction. This simplifies the intention recognition process 
still further. These options are only apparent when the environment is considered within 
the design process and when the modelling of perception as a sophisticated process capable 
of directly accessing higher order properties in the sensed data. 
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of intention recognition.  These representations might be added later to the agent 
for the specific purpose of supporting intention recognition. 

Fidelity of Cognitive Model In some applications the agent must implement a cogni- 
tive model. In these applications the agent must mimic the human reasoning process 
as it is expressed by the particular choice of cognitive model. The choice of cognitive 
model in these applications can constrain or influence the choice intention recognition 
process. 

Choice of agent architecture and language With a dearth of commercial quality agent 
development environments and languages it is likely that an agent development will 
commit to a delivery architecture and language prior to a design. Though clearly 
not advisable from a standard software development perspective the novelty of agent 
technology and the time required to develop expertise in the application of agent lan- 
guages means that the choice of language might well be made prior to design. This 
commitment to a language might also act to constrain the intention recognition 
design space. 

Detail of Agent Reasoning During the agent design it must be determines how much 
detail the agent requires in its representation of intentions of the other agents. If, for 
example, simply knowing the general class of intention is adequate then the intention 
recognition process might be simplified. If the agent requires detailed knowledge of 
the expected possible future actions then the intention recognition process must 
supply this knowledge. This is comparable with the difference in object recognition 
between recognising the general class of an object and being required to reason about 
the many possible attributes of that object. 

Performance Intention recognition as it has been applied in the past is often one of 
the more computationally expensive activities that an agent can undertake46. In 
the majority of systems performance is an issue. Shortcuts that can be achieved, 
particularly with respect to intention recognition are important considerations. 

Ontologies If an ontology is mandated then the concepts that an agent must use are 
constrained. This will limit the scope for designing intention recognition. 

Available Technologies It has already been suggested that modelling intention recog- 
nition with the agent's perception module is suggestive of technologies different to 
those that might be considered for inclusion within the agent's reasoning. In ei- 
ther case, be it pattern matching or inferential reasoning the technology' necessary 
to perform the required task may well limit the possible designs. In dynamic real- 
time environments intention recognition can be both complex in design and time 
consuming in execution. 

Encapsulation, Autonomy and Coupling The allowable coupling or the required au- 
tonomy may influence the selection of the design. Design options notably three, five 
and six have some degree of design coupling between the Intending Agent and the 
Recognising Agent. 

46The technology demonstrator described in Section 2.3.3 devotes more time to intention recognition 
than it does to reasoning for action. This has the effect of more than doubling the execution time of an 
agent. 
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These constraints and influences on the design of the system must be taken into account 
early in the design process as they allow the short circuiting of many of the decisions. The 
agent ontology acts as the specification of the information required by the agent. These 
considerations can be mapped to the qualities of the designs. In the following chapter 
these constraints on design are presented as problems within the description of software 

patterns. 
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Chapter 6 

Design Patterns for Modelling 
Intention Recognition 

"Each pattern, describes a problem, which occurs over and over again in our environ- 
ment, and then describes the core of the solution to that problem, in such a way that 
you can use this solution a million times over, without ever doing it the same way 
twice."—Christopher Alexander et. al. [1] 

Design patterns are the software engineer's way of documenting successful solutions 
to problems likely to be encountered again and again. Design patterns are primarily 
aimed at improving productivity by increasing reuse, but they also play a valuable role 
in documenting, maintaining, and extending existing systems [53]. Agent systems are 
proliferating and emerging patterns, programming idioms, shared ontologies, platforms 
and architectures that support design level-reuse assist in the maturation of agent oriented 
programming into a mainstream branch of software engineering. This chapter presents a 
set of design patterns that can be used and reused for modelling intention recognition in 
agent systems. The set of patterns presented has features of a pattern language. The 
software design patterns community uses the term pattern language for a set of related 
patterns that describe approaches to solve similar problems. Pattern languages form the 
basis of a way of talking about solutions to software design problems in a well understood 
shorthand that succinctly captures the salient aspects of a solution [53, 18]. Presenting 
patterns in this way allows the designer to consider and conceptualise possible solutions 
using the vocabulary defined within the pattern descriptions. This extends the utility of 
the patterns by allowing for combinations, comparisons, and trade-offs to be more easily 
discussed. Presenting agent system architectures as patterns provides an appropriate and 
familiar documentation style to facilitate their adoption by the wider software engineering 
community. 

Section 6.1 provides necessary background prior to the elaboration of the patterns 
themselves. In Section 6.2 six patterns are presented corresponding to the six architectures 
that were a result of Chapter 5. For each pattern an actual example from a military air- 
combat simulation illustrates it use. The examples are extended further in a related 
domain and become the basis for the system descriptions of the flight simulator presented 
in Chapter 7.   The language and style of Section 6.2 is different from other sections of 
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this thesis.  This is deliberate to more closely resemble the published software patterns 
literature. 

Section 6.3 provides a summary of the patterns and a guide to their application that 
allows the software engineering practitioner to more easily match problems to solutions. It 
is envisaged that the practical employment of agent design patterns will require application 
guides to manage the complexity of the large numbers of closely related patterns required 
to cater for agent systems development. Agents are more abstract and usually encapsulate 
greater functionality than the comparatively simpler object. Patterns will be required 
that can plug and play with other patterns and guides that lead the software engineer 
toward suitable solutions will be required. Even in object oriented development meta- 
patterns [143] and pattern languages47 are moving in this direction. 

6.1    Preliminaries 

Almost all of the published patterns literature relates to object oriented analysis and 
design. What little there is was summarised in Section 2.6.1.1. Object-oriented design 
patterns are normally described with the aid of a template [53]. Templates standardise 
the pattern description thereby facilitating pattern consideration through familiarity with 
the presentation format. Section 6.1.1 outlines the pattern description template chosen 
for this thesis. Pattern description templates provide standard ways of documenting pat- 
terns. Although there are clear similarities between published agent patterns there are no 
documentation standards and the approach taken is to adapt the state of the practice of 
the object oriented patterns community. Section 6.1.2 describes briefly a possible categori- 
sation of these patterns. Object oriented patterns are typically classified as architectural, 
functional, behavioural, etc. Section 6.1.4 describes the particular example chosen for 
illustrating the implementation of the patterns that follow in Section 6.2. 

6.1.1    Agent Pattern Description 

When presenting design patterns it is commonplace to define templates that link the 
patterns together in a consistent fashion [18]. With few published attempts to define 
templates or languages for agent patterns there is little in the way of precedent to build 
upon. Standards for the description and categorisation of agent patterns will emerge over 
time. Until then informed ad-hoc choices are the only alternative. 

Deugo et. al. use a slight variation on the basic standard 00 software engineering 
presentation format to describe patterns for communication in mobile agents. They specify 
the problem, the context, the forces, the solution and, finally, the resulting context [41]. In 
a similar fashion Kendall et. al. describe the problem, forces, and then the solution [95]. 
The Tropos project is another source of published agent patterns but again there is no 
definitive recommendation about an appropriate description template [24]. 

47T Perhaps the best source of information about Pattern Languages are the proceedings of the 
Pattern Languages of Programming Conferences (PLoP). These are accessible on-line http://st- 
www.cs.uiuc.edu/plop. 
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The intention recognition patterns presented here demand a level of documentation 
that requires a sophisticated description template. The description style chosen is the one 
recently published by Buschman et. al. [18]. Similar to that of the Gang of Four [53] there 
are a number of differences, notably the addition of an example that extends through the 
description48. 

The chosen template is detailed and comprehensive enough to describe the subtle 
differences between the intention recognition patterns. A more detailed description of the 
origins, use and the practical application of patterns is available [53, 18] or in Section 2.6.1. 
Each pattern presented in Section 6.2 is documented textually and graphically with the 
following fields49: 

Classification and Name The classification and the name should provide a memorable 
description of the pattern. A good name can form the basis of a pattern language 
and becomes the reference to the pattern when it is used in the context of broader 
descriptions. 

Example The example provides a description of an actual problem that demonstrates 
the need for the pattern. Throughout the description of the pattern the example 
provides a grounded reference that keeps the discussion of the pattern practical and 
useful. 

Context The context is a statement of the conditions under which the designer might 
consider using this pattern. For a given context there may be more than one appli- 
cable pattern leaving the designer with a choice. 

Problem The problem describes the issues, problems, and challenges that the pattern is 
designed to address. 

Solution The basic principal that defines the pattern that solves the problem. This is 
a description of the general nature of the solution and any relevant background 
information. 

Structure The structure of the pattern is presented graphically to assist understanding 
of the functioning of the pattern. The 00 community commonly adopts the UML 
to present a structural description of patterns and is an emerging standard for pre- 
senting system architectures [79]. Given the increasing interest that the UML is 
receiving from the agents community50 the UML is also adopted here to present the 
agent architectures. 

Dynamics The interactions between elements of the pattern (also known in the patterns 
literature as participants) are described and provide the basis designing interfaces 
and partitioning functionality. The dynamics of the high-level architectural design 
patterns in this Chapter will vary greatly with specific implementation. Although 
the UML's interaction, state, and collaboration diagrams, might be used to show the 

48Variations on the Gang of Four style of presentation has also been adopted for the presentation of 
agent patterns by Findler et. al. in their work on patterns for social structures [111]. 

49These fields are exactly those of Buschmann et. al. [18] 
50Not the least of which is a proposal under the auspices of the Object Management Group (OMG) to 

create an Agent UML (AUML) [132] 
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dynamic behaviour of agent patterns for the intention recognition patterns presented 
in this chapter annotations of the structure diagram are more appropriate. For this 
reason the Dynamics and the Structure of the intention recognition patterns are 
presented together and displayed in the same figure. 

Implementation The implementation captures any known features, tips, tricks, traps, 
hints and guidelines that will facilitate the adoption and use of the pattern. Although 
this field is an important part of most pattern descriptions it is omitted. For agent 
systems the variety of possible implementations renders this field of little use other 
than as a summary of the important lessons from case studies. The reader is referred 
to Chapter 7 for examples of the implementation of these patterns. 

Variants Any notable variants of the basic pattern are described. 

Known Uses If there are any examples of the patterns in use they are described here. 
This allows the user of the pattern greater practical insight into the nature of the 
pattern and its employment. Any occurrence of the intention recognition patterns 
described in this chapter in the wild is the result of the post-hoc attribution of the 
pattern to the design and not the deliberate adoption of the design pattern as part 
of the system design. The patterns are presented as an attempt to map the design 
space and to characterise existing systems. As a result the known uses field describes 
systems that might be characterised as conforming to the architecture of the pattern. 
For some of the patterns this field is deleted as there are no systems (other than those 
described elsewhere within this thesis) that are known to conform. 

Consequences Adopting any pattern will result in particular benefits and almost cer- 
tainly some liabilities. These are documented to provide the engineer insights into 
the trade-offs that are made when adopting the pattern. 

See Also This field describes relationships to other patterns, either as alternatives or 
dependencies. For most of the patterns this is neglected as entries becomes tightly 
self referential within the context of this set of patterns. Rather a 'relationship 
map' is provided in Section 6.3 that summarises the usage of the patterns and the 
relationships between them. 

For agent patterns that deal with social interactions in multi-agent systems it may 
well be necessary to augment the template chosen, but it is adequate for describing agent 
architectural patterns of the type presented here. 

6.1.2    Agent Pattern Categories 

The object-oriented community classifies their software patterns into categories that 
reflect a broad grouping based on function. Typical categories include: structural, for 
patterns that describe data or process structures; creational, for patterns that describe 
solutions for creating object instances in different circumstances; and behavioural, for 
patterns that define the way an object operates. Although Lind proposes a useful set 
of agent pattern categories [108] there is no accepted categorisation for agent patterns. 
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There are so few recorded examples of agent patterns that any categorisation would be 
little more than a proposal. 

Buschmann [18] describes three layers of patterns: architectural patterns; design pat- 
terns; and programming idioms. This categorisation is not quite so useful for agent sys- 
tems. The differences between agent languages render programming idioms less relevant 
and the increase in the level of abstraction requires categories in addition to design and 
architectural. It has been a fundamental claim of this thesis that there is an important 
design interplay between the agent and the environment that influences both the system 
architecture and the internal design of the agent. For this reason the patterns here, al- 
though they are described as architectural patterns, also capture important aspects of the 
internal agent design. 

The patterns presented here are agent architectural—each pattern describes a solution 
to the problem of implementing intention recognition in an agent system by presenting an 
architecture. In agent systems the architectural design is critical and goes to the heart of 
the manner in which the agent is situated in the environment and the manner in which 
agents collaborate. The pattern description includes details of both the relationship of 
the agent to the environment and to other agents and any relevant details of the internal 
design of the agent. 

Other possible agent pattern categorisations might include: behavioural, describing 
some aspect of the operation of an agent; cognitive, describing the reasoning architec- 
ture of agents; social, describing the interactions between agents; and mobility, describing 
some aspect of the agents capacity to move over the web. Whether any or all of these 
classifications prove useful will only be known as agent technologies mature and become 
mainstreamed and there is a corresponding increase in documented experience with im- 
plemented agent systems. 

6.1.3    Agent Pattern Evaluation 

The design patterns are evaluated against seventeen criteria. These criteria are ar- 
ranged under four headings. The first three categories reflect best practice in specifying 
agent architectures through their similarity with these IEEE standards 51. A fourth cate- 
gory of evaluation criteria is needed to account for the cognitive modelling aspects related 
to agents and intention recognition. 

1. Module Criteria where the important criteria are those assess the particular detail 
design requirements of the various modules and the relationships between them. 
Example criteria include: 

• complexity of the individual modules—specifically perception and reasoning; 

• appropriateness of the functionality assigned to a module; 

51 IEEE Std 1471-2000 "Recommended Practice for Architectural Description of Software-Intensive Sys- 
tems" and IEEE Std 1016-1998 "Recommended Practice for Software Design Descriptions" suggest three 
system decompositions to specify an architecture. A difference is that the IEEE standards calls for a 
process decomposition but this is replaced (perhaps even subsumed) by a non-functional requirements 
category. 
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• cohesion of the module; 

• coupling between agents; 

• likely complexity of the implementation technology; 

• implications for the total system. 

2. Data Criteria considers the data available in the agent system to support particular 
architectures. This is particularly useful if large parts of the system are in existence. 
This view considers issues such as: 

• data that is provided to the perception modules from the remainder of the 
system; 

• the data that is required by/provided to the agent's reasoning processes; 

• the amount of data processing that is required. 

3. The Process Criteria considers performance and complexity related issues that often 
impact upon the selection of an appropriate architecture. 

• the likely computational performance required of the system; 

• the resultant architectural complexity; 

• the total system complexity—taking into account architecture, technology, and 
module interactions. 

4. Finally, and importantly, the Cognitive Modelling Criteria gives weight to issues 
associated with computational cognitive modelling. Only relevant for intelligent 
agent systems where computational modelling of intelligence is an issue this view 
consider such things as: 

• the division between perception and reasoning (cognition), specifically how 
much reasoning is performed by the agent reasoning; 

• the nature of the cognitive model; and 

• the location (in the various modules) of intention recognition. 

Generally the software engineering process will consider many, if not all, of these 
categories when selecting the appropriate pattern and no one will dominate. 

6.1.4    Illustrative Examples Used Throughout this Chapter 

Exposing the detail of the implementation of patterns requires substantive illustrative 
examples [18]. Notwithstanding the detailed description of the practical application of 
these patterns that follows in Chapter 7 it is useful to provide a brief but hopefully 
enlightening example for each patterns that provides insight into the relationship between 
the problem that the pattern solves and the implementation detail of that solution. 

The examples provided for each of the patterns arises from military simulation. This 
domain was chosen because: there are strong examples of each of these patterns available; 
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the implementation details and design are well known to the author (much of the design 
and development of these systems was undertaken by the author whilst employed by the 
Defence Science and Technology Organisation); some details have been published in the 
literature [169, 78, 76]; and the specific requirements of this domain fostered the research 
that led directly to this thesis. 

It is important to note that the development of the simulation systems described in 
these examples preceded the description of the design patterns. The designs chosen were 
as a result of a software design process that did not consider the application of patterns, 
suitable patterns did not exist. Nor did the development of these simulations give rise 
to the patterns directly. The post hoc attribution of the patterns to various incarnations 
of these military simulations was a fortuitous result of an examination of the simufator 
architectures following the documentation of the intention recognition patterns. It is 
possible, even likely, that the experiences with simulation design unconsciously influenced 
the development of the design patterns. If so the influence was entirely appropriate. Design 
patterns should be the result of experiences with successful software development. 

Each of the examples consider architectural design decision that were made during 
the development of a military simulator. In these types of simulators intelligent agents 
are often the technology of choice for the implementation of computer generated forces 
(CGF). CGFs benefit from intention recognition because it allows them to be less easily 
seduced by human pilots who often quickly learn to trick predictable agents; because it 
improves coordinated behaviour by allowing the agent to predict the future actions of its 
team members; and because it allows the agent to more accurately reflect the intention 
recognition performed by real fighter pilots. 

These simulators are highly complex software systems that have been built-up over a 
number of years. In most cases the intelligent agents within the simulation have been added 
as an afterthought in response to available technology and were not an original component 
of the system. Major alterations to the system are often prohibitively expensive and agent- 
design compromises often result. In the examples that follow it is appropriate to visualise 
the agents as surrogate pilots flying as computer generated adversaries inside the simulator. 
Implementing intention recognition in these agents is conditioned by the constraints and 
requirements that help to specify the system. 

6.2    Agent Patterns for Intention Recognition 

This section presents six agent architectural patterns that might be used to assist 
the modelling and design of intention recognition for intelligent agent systems. The six 
patterns are the set of possible variations available when the intentional activity of an 
agent is characterised on three levels: the intentional level; the activity level; and the 
state level; and recognition is conducted at those three levels. Details of the model that 
led to these patterns is presented in Chapter 5. 

The patterns described here at the architectural design level, and although they may 
point toward certain implementation technologies the gap between abstract agent architec- 
ture and implementation is likely to be wider than is the case for object-oriented systems. 
Attempts have been made to canvass implementation possibilities for each of the designs 
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and these are documented under implementation. Figure 6.1 shows a UML use case di- 
agram that depicts the relationship between these patterns52. These types of diagrams 
are useful for expressing the relationships between patterns and the manner in which they 
relate to the requirements but should not be confused use case patterns [53]. 

The patterns here share a number of common elements (or participants as they are often 
referred in the patterns literature). A brief description of these participants is included 
here to avoid duplication in the pattern descriptions that follow. 

Recognising Agent The agent that requires the capability to recognise the intentions 
of other agents. This agent conforms to the definitions presented elsewhere in the 
thesis (Section 2.1) and has perception, reasoning, and action sub-components. 

Intending Agent An agent who's intention will be recognised. This is not to imply 
that it actually needs to manifest some representation of intention as it executes. 
Intention can be ascribes by the recognising agent. 

Labeller The labeller is a system component responsible for labelling an agent with 
an indication of its internal state. In practice the labeller can be implemented in 
such a wide variety of ways that the term labeller might be a bit misleading. For 
example the labeller might be as simple as an accessor function that an agent to 
read the internal state of the agent. The Labeller might be a function internal to 
the Intending Agent that actually does provide an externally readable label that 
can be accessed by other agents. Even in this case there are many options. The 
labeller might need to provide a different label for every other agent in the system. 
Or perhaps a number of labels that differ on context. So that an agent reading the 
label will see a different label depending upon its situation. Perhaps the labeller is 
a function that is external to both the Intending Agent and the Recognising Agent, 
residing somewhere in the environment in a dedicated Intention Recognition module 
that handles all of the intention recognition modelling for the system. The primary 
distinguishing feature of this participant is that it presents an indication of intention 
or action to the recognising agent thus removing the need for any processing internal 
to the agent. The particular design chosen will be strongly influenced by the design 
of the intending agent. 

Sensor The Sensor is a Perception component that gathers data from the environment 
and provides it to the reset of the system. It manipulates the data in a trivial 
fashion, minor transformations of the data are allowed but aggregation, fusion, and 
abstraction of the data are outside the function of this module. 

Action Inferencer The action inferencer is a system component responsible for recog- 
nising actions in the state data. The module is internal to the reasoning of the 
recognising agent. 

Intention Inferencer The intention inferencer is a system component responsible for 
recognising intentions in the action data. 

The notation for the agent (an actor inside a circle with an arrow) is an extension to UML originally 
proposed by Papasimeon and reported by Heinze [75]. This notation is not standard and is introduced 
here but is not used in the pattern descriptions in the interests of conforming to agent standards. 
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Figure 6.1: Use Case Diagram for Intention Recognition Patterns. This diagram shows the 
relationship between the two human participants involved in intention recognition captured 
by the intention recognition business case (the business case is designated by the diagonal 
stripe). This real-life case is realized by the agent use case below it. The design patterns 
are variations on the abstract intention recognition use case. Finally the use cases include 
two further use cases Inferential Reasoning and Ecological Perception. 
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Pattern Matcher The pattern matcher is a system component responsible for recog- 
nising intentions in the patterns of input data. Although the function might be 
considered similar to the Inferencer components there are two significant differences: 
the pattern matcher is a perception component and therefore isolated from the agent 
reasoning; the pattern matcher is a self contained and autonomous component of the 
agent responsible for data abstraction. The participant is names Pattern Matcher 
but ultimately any technology capable of mapping from physical state to higher 
order representations will be adequate. Obviously the particular properties of the 
system will dictate the type of solution required. 

Environment The environment is a participant responsible for storing the physical state 
of all entities in the system and for modelling the interactions between them. 

These participants are the base components used in the architectural pattern descrip- 
tions that follow. 

6.2.1    Pattern: Hybrid Recogniser 

This pattern implements a hybrid solution by combining aspects of the ecological 
family of patterns and aspects of the sense-and-infer patterns. The Hybrid 
Intention Recognition agent architectural design pattern implements intention 
recognition in an agent system. The Recognising Agent perceives directly the 
activities of the Intending Agent in the data sensed from the environment and 
then infers its intent. This pattern gains the name Hybrid Recogniser because it 
is a combination of the Ecological Recogniser and the Sense and Infer patterns. 

6.2.1.1 Example 

An air combat simulation requires computer generated forces that can infer the inten- 
tion of others. A major difficulty is in designing the means by which the agents determine 
what particular tactics the aircraft in the simulation are adopting. Once that is known it 
is a relatively simpler task to infer the intentions. If an agent knows that an adversary 
aircraft has completed a particular manoeuvre and has just commenced a new manoeu- 
vre then it is straightforward to string those building blocks together into an integrated 
intentional view of the situation and to predict what will follow. 

6.2.1.2 Context 

The provision of intention recognition in an intelligent agent system. 

6.2.1.3 Problem 

When intention recognition is required and the features of the problem domain are 
similar to those of the Ecological Perceiver or Sense and Infer then the Hybrid Recogniser 
offers a viable alternative. This pattern is particularly relevant if the mapping between the 
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environment state and the recognised activities is complex but does not depend upon the 
Recognising Agent's mental state whereas the mapping between the recognised activities 
and the recognised intentions is simpler but is influenced by the mental state of the agent. 
This pattern provides a compromise between the completely inferential approach of the 
Inferencer Pattern and the completely perceptual approach of the Ecological Intention 
Recognition Pattern. 

The Hybrid Recogniser pattern should be used under the following conditions: 

• The system outside of the agent that is conducting the recognition cannot be designed 
or modified to support intention recognition. 

• There is a well defined boundary that separates agent perception and reasoning. 

• The mapping from actions to intentions is simpler than from environment state to 
actions. 

• The mapping from the environment state to actions is relatively uninfluenced by the 
agent's mental state unlike the mapping between the resulting actions and intentions. 

6.2.1.4 Solution 

The solution is to provide a Pattern Matcher to map state data onto action data and 
then use the Intention Inferencer to reason about the intentions. This solutions combines 
two quite dissimilar approaches, hence the name Hybrid Intention Recognition. The choice 
of pattern matcher for the first stage and inferential reasoning for the second is appropriate 
from a computational sense in managing the types of data and cognitively in psychological 
sense in the manner in which it maps to theories of human psychology. 

6.2.1.5 Structure and Dynamics 

The structure and dynamics of the architecture is described by Figure 6.2. 

6.2.1.6 Example Resolved 

The implementation of this example was the first stage of a program to transfer the 
content of this thesis to military simulation. CLARET was used as a pattern matcher 
and passed descriptions of recognised manoeuvres to the dMARS agents that were used to 
model the fighter pilot reasoning. These manoeuvre descriptions where then used as the 
building blocks of an inferential reasoning process that resulted in intention recognition. 
The system proved capable of recognising a wide range of intentions if the scenarios were 
relatively simple. As the number of simulated aircraft was increased beyond the single- 
opponent case ambiguity in identity proved problematic. 

6.2.1.7 Variants 

The variants of the Hybrid pattern are the possible combinations of the variants of the 
Sense and Infer pattern and the Ecological Recogniser pattern. 
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3. The Intending Agent's actions 
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5. The recognised actions are 
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where they are processed and 

intentions are recognised 
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agent's reasoning module. 

Figure 6.2: Pattern Structure: Hybrid. The Hybrid pattern makes use of state data from 
the environment which is passed to a perception .module. The pattern matcher processes 
this data in search of actions. As these are recognised descriptions of thenm are passed to 
the agent's reasoning module where they are used to infer the existence of intention. 
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6.2.1.8    Consequences 

Some of the benefits of the Hybrid Intention Recognition Pattern: 

1. Autonomy By maintaining the intention recognition capability entirely within the 
agent and requiring no modifications to other components of the system the agent is 
kept as a completely autonomous entity. It is designed for a particular environment, 
of course, but changes to the internals of any other system component will not effect 
the agent. The agent is completely responsible for the intention recognition process 
and requires no external assistance. 

2. Cognitively Interesting This pattern provides the architecture that comes closest 
to mainstream views about the nature of human cognition. The recognition of activ- 
ities is modelled as a component of perception but relating those activities to each 
other and inferring more abstract properties like intention is assigned to the agent's 
reasoning. This draws the line between perception and cognition at a midpoint of 
the ongoing AI debate about the nature of models of human intelligence [26]. 

and the liabilities: 

Complexity The implementation will require both inferential reasoning and pattern 
matching. Though not mandating different languages or technologies, more sophisti- 
cated implementations may require this. Agents composed from hybrid technologies 
are often afflicted with greater complexity in design testing, validation and mainte- 
nance and all of the problems of hybrid technology solutions. Not only is the agent 
multi-technology but the provision of intention recognition is multi-technology. The 
agent developer is likely to make use of two distinctly different technologies in the 
provision of the required functionality. 

6.2.1.9    See Also 

The Hybrid pattern, as the name suggests, is a hybridisation of the Ecological Recog 
niser and the Sense and Infer patterns. 

6.2.2    Pattern: Sense-and-Infer 

This pattern is named for the dominant theory of visual perception that is 
reflected in its architecture. The agent will recognise intentions by sensing 
the environment and inferring higher order concepts. The Sense and Infer 
agent architectural design pattern implements intention recognition in an agent 
system. The Recognising Agent senses the environment state and infers the 
intention of the Intending Agent in a two step process. 
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6.2.2.1 Example 

Adding an intention recognition capability to the existing computer generated forces in 
a military simulator gives them the capacity to respond more quickly and intelligently to 
events that occur. One of the clearly identified requirements for these types of simulators 
is intention recognition [115]. In order that these intelligent agents pose a realistic threat 
they are to be given the capacity to infer the intention of other pilots and to anticipate 
their future actions. This is useful for both adversarial situations where anticipating an 
opponent allows for preemptive action and in cooperative situations where anticipation 
smoothes collaboration and reduces the need for communication. 

The simulation system is in operational use and the intention recognition capability 
must be added to it. The agents as they currently exist make use of a high-level agent lan- 
guage and implement very sophisticated behavioural functionality [74]. The behavioural 
repertoire of the agents is such that the agents must integrate intention recognition very 
tightly so that recognition can be influenced by the agent's current activities. 

6.2.2.2 Context 

The provision of intention recognition in an intelligent agent system. 

6.2.2.3 Problem 

Intention recognition is required in an agent system where there are some fundamental 
restrictions on the design: entities other than the Recognising Agent may not be modified 
to support intention recognition; and there is a requirement that intention recognition 
be integrated in a sophisticated way with other agent reasoning behaviour. The first 
requirement might occur when there are legacy issues, the agent is being designed to be 
placed into some third party system or the cost of modifying other parts of the system to 
support intention recognition is prohibitive. 

Use the Sense-and-Infer architecture to balance the following forces: 

• The environment and other agents cannot be modified to assist the Recognising 
Agent with the intention recognition task. This precludes direct access into the 
internal state of other agents is not possible. This is commonly the case if the 
intention to be recognised is that of a human interacting with the system53. In a 
system inhabited only by agents this suggests that there is no direct contact allowed 
between the agents supporting intention recognition. All contact is indirect and 
sensed through the environment. 

• It is desirable that there be low coupling between the agent and the rest of the 
system.   This is a common requirement in developing agents that can be reused 

Whilst direct access to the internal intentional state (if such a thing even exists) of a human is not 
possible, a human using a software system can be questioned about their intent, or their beliefs, goals, or 
plans. Leaving aside issues of the reliability of the response it is possible for an agent to gain some insight 
into the mental state of a human without resorting to inferential reasoning. 
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in multiple environments. If the agent system is open (there is a requirement for 
interoperability with other, as yet undefined systems), required to be modular, or 
unstable then low coupling between agents is desirable. 

The agent should implement a model of intention recognition that has some psycho- 
logical plausibility. The Sense and Infer architecture implements places responsibility 
for intention recognition entirely within the Recognising Agent. This matches in- 
tuitions about the nature of human intelligence although from an AI perceptive it 
places relatively more functionality into cognition than perception. 

The intentions to be recognised are those of a human user of the system or there is 
no access to the internal mental states of other agents. 

The set of state data used to infer the intentions is relatively small. If the set of 
state data required for intention recognition is large then there may be a significant 
overhead incorporating this data into the agent's reasoning. 

Performance and complexity issues will not dominate. The Sense and Infer will 
result in a more complex implementation than other patterns. The performance of 
intention recognition will be determined largely by the specifics of the domain and 
the implementation but all other things being equal the Sense and Infer pattern is 
one of the more complex patterns. 

There is the capacity or requirement to reason at multiple levels of abstraction. If 
the agent must reason at multiple levels of abstraction for other purposes. Perhaps 
in fulfilling other reasoning requirements the agent makes use of the state data 
required for intention recognition then there is little disincentive to avoid state-data 
for intention recognition. 

The inferential reasoning required for the Sense and Infer pattern is likely to be 
complex. If there are other equally complex processes occurring within the agent 
then the overhead of this pattern may be relatively small. 

The recognised intentions are highly subjective or situation dependant. If the inter- 
nal state of the Recognising Agent (particularly the state of its reasoning) influences 
the recognition process then the Sense and Infer pattern is strongly suggested. 

• There are relatively few intentions to be recognised. If the scale of the recognition 
problem is small then the complexity of the pattern can be held at a manageable 
level. 

6.2.2.4    Solution 

Introduce a Sense-and-Infer architecture to provide intention recognition encapsulated 
entirely by the agent's reasoning. The agent first senses the data available in the environ- 
ment and then infers intention in a two stage process. The first results in a representation 
of the recognised actions and the second step result in recognised intention. 

By using the Sense-and-Infer pattern an agent is decoupled from the environment 
and applications support heterogeneous agents and more flexible reuse. The inference of 
intention capability is encapsulated by the agent creating a cleaner interface. 

• 
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Inference of intention is conducted inside the agent and there need be no direct map- 
ping between any actual intention and that which is inferred. Intention is in the eye of 
the beholder. Because the intention recognition is conducted entirely within the agent's 
reasoning module there is greater opportunity to exploit interactions between intention 
recognition and other agent behaviours. 

6.2.2.5 Structure and Dynamics 

The structure and dynamics of the Sense and Infer patterns is described by Figure 6.3. 

6.2.2.6 Example Resolved 

The Sense and Infer pattern was applied to the design of the computer generated 
forces. The agents sense the unmodified simulation environment through a constructed 
interface that models the senses and sensors available to the pilot. This sensory data 
is then processed by a module that observes actions as they occur. This observation 
classifies actions based on a set of rules that map aircraft trajectories and specific discrete 
events (such as an observed missile firings or radar detection events) onto descriptions of 
manoeuvres, tactics, and actions. The first inferencing process was implemented within 
the standard dMARS language using a set of plans to define the procedures by which 
manoeuvres and tactics were recognised. This set of observed manoeuvres, tactics and 
actions is passed to a component that conducts hypothesis based reactive recognition over 
a set of possible intentions. This was implemented with a custom extension to the dMARS 
language [19]. When only a single option remains then recognition component announces 
that it has successfully recognised the intention. Interactions between these two processes 
were permitted as were interactions with any other agent reasoning process. More details 
of simulation are available in Section 2.3 and of the theory of the reactive recognition 
algorithm used by Rao and Murray [151]. It should be noted that the development of this 
software pre-dated this research into patterns and so the assignment of the Sense and Infer 
pattern to this system, though perfectly reasonable, was post-hoc. This implementation 
added significantly to the processing overhead of the agents and although successfully 
demonstrated never become operational. 

6.2.2.7 Variants 

A number of variants of the basic Sense and Infer pattern are possible: 

1. Single Step Sense and Infer In simpler systems the infer stage of the intention 
recognition process might be conducted in a single step. The agents reasoning might 
infer intention without requiring the intermediate stage. 

2. Multi-step Sense and Infer Rather than action as the intermediate step there 
might be some other intermediate step that might be as useful. In more complex 
systems there may be several intermediate reasoning steps that are necessary along 
the way to a completing the intention recognition.   Tidhar and Sonenberg [162] 
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Figure 6.3: Pattern Structure: Sense and Infer. The internal detail of the Intending 
Agent is inconsequential to the pattern as the Recognising Agent senses only changes in 
the environment state. In practice, execution will possibly involve asynchronous parallel 
processing at each step and not the synchronous sequence shown here but the process is 
similar. An agent, the Intending Agent acts in the world and the effects are sensed by 
the Recognising Agent. The Sensor is responsible for Sensing the appropriate state data 
in the environment and passing this information to the Action Inferencer. The Action 
Inferencer, utilising inferential reasoning or an equivalent, determines the actions taken 
by the agent that gave rise to the sensed state of the environment. The Recognising Agent 
assimilates the sensed state-data into its reasoning and through some reasoning process, 
characterised here as inference but it need not be, develops a subjective classification of 
the actions that led to that state-data. The Recognising Agent then process the classified 
actions to recognise the intentions that gave rise to the actions. 
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propose six different steps, in a process that has the basic look and feel of the 
sense and infer pattern but deals with intention recognition in the complex social 
environment of multi-agent systems. 

3. Sense and Infer with Plan Recognition Perhaps an obvious replacement inter- 
mediate step for conducting the inferential part of the pattern is to focus on plans 
and plan recognition rather than actions. The nature of intention can then be con- 
structed from knowledge of the plans. For some researchers there is little difference 
between plan and intention recognition but adopting a view of intention such as that 
of Rao makes plans an obvious intermediate point for intention recognition.54 

6.2.2.8    Consequences 

Some of the benefits of the Sense-and-Infer pattern are: 

1. Autonomy By maintaining the intention recognition capability entirely within the 
agent and requiring no modifications to other components of the system the agent is 
kept as a completely autonomous entity. It is designed for a particular environment, 
of course, but changes to the internals of any other system component will not effect 
the agent. The agent is completely responsible for the intention recognition process 
and requires no external assistance. In the mainstream terminology of software 
engineering autonomy could equally be referred to as encapsulation. 

2. Coupling As a consequence of the autonomy of the agent and the lack of direct 
dependence upon other modules, coupling is low. 

3. Reuse Because the agent is designed to infer intention from low level state data and 
is less coupled to other agents than in other patterns reuse across environments is 
encouraged. 

4. Agent Heterogeneity A consequence of inference of intention operating exclusively 
with state data observed in the environment there are no special requirements placed 
on the internal design of other agents. This allow for agent systems where agents 
can recognise the intentions of any agents regardless of their internal structure. 

5. Cognitive Plausibility The process of intention recognition defined by the Sense 
and Infer pattern is similar to mainstream theories of human perception and intention 
recognition. 

6. Intentional Ascription Intention recognition with the Sense and Infer pattern 
requires no explicit representation of intention in the agents whose intention is being 
recognised. The intention recognition process is completely one of ascription by the 
recognising agent. 

I should comment on this further somewhere - maybe in the scope - or maybe in Chapter 5. This sees 
plan recognition as a precursor to intention recognition. Although this matches certain views of the subtle 
difference between plan and intention recognition there are many practical examples of applied plan and 
intention recognition that blur the distinction enough to render it meaningless. 
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7. Integrated Reasoning When the intention recognition process is part of the wider 
reasoning processes of the agent there is scope for modelling sophisticated behaviours. 
Behaviours where intention recognition is more directly influenced by and in turn 
influences other aspects of the agent behaviour. 

but the pattern also suffers from four liabilities: 

1. Agent Complexity The inferential reasoning required to recognise intentions of 
other agents can be highly complex. The actual complexity is of course domain 
dependant but the Sense and Infer pattern will generally result in a more complex 
and sophisticated agent structure. 

2. Ontological Purity With the Sense and Infer pattern the agent reasons with the 
low-level state data sensed from the environment. This contradicts the general con- 
cept of an agent as a software entity that should manipulate more abstract concepts. 

3. Performance The complexity that results from the Sense and Infer pattern can 
lead to performance problems. 

4. Practicality The Sense and Infer pattern is impractical if the set of state data 
is large that must be reasoned with to infer actions and intention is large. The 
Ecological Recogniser pattern may be preferred in cases where the state-data set is 
large, likely to be modified, or subject to change with context. 

6.2.2.9    See Also 

The Assisted Sense and Infer pattern is the next closest relative of the Sense and Infer 
pattern but the two others most likely to meet the same set of requirements are the Hybrid 
Recogniser and the Ecological Recogniser. 

Again the process, characterised here as inference, might be some other form of reason- 
ing but the significant feature of this pattern is that at either of the processing is considered 
to be internal reasoning of the agent and not a part of the perception module. At any 
stage feedback or feed-forward between the two inferencing processes is viable allowing 
recognition of an intention to influence future recognition of actions etc. Furthermore, the 
recognition process can be influenced by any other agent activities. In this way the recog- 
nition process can be truly subjective. Not just subjective in the sense that it depends 
upon an agent's local view, but that it depends also upon the agents internal state. This is 
possible within this pattern because the entire recognition process is conducted as a part 
of the agents larger reasoning processes. 

6.2.3    Pattern: Assisted Sense and Infer 

This pattern is a variant of the sense and infer pattern. The recognising agent is 
assisted in its task by virtue of direct access to named representations of actions 
in the environment. The Assisted Sense and Infer agent architectural design 
pattern implements intention recognition in an agent system. The Recognising 
Agent senses the activity state of the Intending Agent and then infers its intent. 
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6.2.3.1 Example 

The air combat simulator described in Section 6.1.4 was proving difficult to maintain. 
While the number of possible manoeuvres, tactics, and actions was small the task of dis- 
ambiguating them was tractable, but as the repertoire grew it became increasingly obvious 
that there were significant problems in maintaining the system. Furthermore there was 
a computational overhead that introduced a substantial performance problem. The diffi- 
culties were not with the second inferencing stage, that which maps actions to intentions 
but with the first, the mapping of state data into action. The problem occurred because, 
as the number of actions to be recognised grew so did the complexity of disambiguating 
the possibilities (See Heinze et. al. for a more detailed discussion of the problems of 
disambiguating tactics in air combat simulation). A design solution was needed to man- 
age the complexity of the inferencing process but that required little modification of the 
underlying simulation infrastructure. Adding to the difficulties the agent implementation 
language was quite well suited to the second stage inferencing where the rules specifying 
the relationships between actions and intentions were quite simple but far less suited to the 
first stage where the rules where based primarily on complex spatio-temporal geometric 
relationships between aircraft. 

6.2.3.2 Context 

The provision of intention recognition in an intelligent agent system. 

6.2.3.3 Problem 

Intention recognition is required of agents in an agent system but there is some access 
available to the internal state of the agents (this is not normally the case with human users 
of a system). The accessible internal agent states indicate their current activities and these 
might be used to facilitate intention recognition. Beyond simple availability these states 
must also be suitable and useful for supporting intention recognition. It might be that 
access to the agents states is already available in some form or it might be that other agents 
can be specifically designed to manifest these states, or that some process generates them. 

The Assisted Sense and Infer pattern should be used to under the following conditions: 

• Representations of the activities of the agent is accessible or can be created. 

• It is possible to design, modify, or extend the Intending Agents to provide the support 
for the provision of the activity state data. 

• These representations are suitable for supporting intention recognition. 

• It is acceptable to create a coupling between agents for the purposes of intention 
recognition. 

• Inference of intention can process data at the activity level and above. There is no 
requirement that the intention recognition process reason about detail beneath the 
activity level.   This suggests that disambiguating intentions or making use of the 
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knowledge about another's intention does not require access to data about intention 
at the environment state data level. 

6.2.3.4    Solution 

The Assisted Sense and Infer pattern is similar to the Sense and Infer pattern but uses 
direct access to the actions of the Intending Agent to remove the first inference step. The 
access to direct knowledge of the actions can be conceptualised as reading the labels that 
are placed on an agent but making knowledge of the actions of an agent directly available 
to other agents might be achieved in several ways but in most cases this will require some 
modification to system components other than the recognising agent. Once the actions of 
an agent are known an inference process can infer intention in much the same way as for 
the Sense and Infer pattern. 

6.2.3.5    Structure and Dynamics 

The structure and dynamics of the Assisted Sense and Infer pattern are shown in 
Figure 6.4. 

6.2.3.6    Example Resolved 

The Assisted Sense and Infer pattern was applied to provide the agent conducting 
the recognition with pre-determined representations of the required actions. Agents in 
the flight simulator make decisions that result in the selection of particular manoeuvres— 
ultimately as an enumerated type. Global access to these manoeuvre numbers was pro- 
vided, removing any ambiguity, or need, for the first inferencing stage. The reactive 
recognition component described in Section 2.3.3 was then used, in a form unmodified 
from that described in the Sense and Infer pattern to infer intention based upon the 
knowledge of these manoeuvres. Although the implementation of this design simplified 
the agent reasoning it reduces the face validity of the simulation by adopting a somewhat 
artificial method of the Recognising Agent becoming aware of the manoeuvres of other 
agents. It also introduces an artificial coupling that ties the agents together for the single 
purpose of modelling intention recognition. 

6.2.3.7    Variants 

The variants of the Assisted Sense and Infer pattern are dictated by the type of data 
that is made available to the Recognising Agent. A representation of the activities and 
actions of the Intending Agent was made available in the description of this pattern but 
alternatives might choose some other equally useful representation. Alternates would 
include those features that are related to activities: plan or function; and those that are 
either more declarative in nature such as belief or the state of a database or the result of 
a query. 
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1. The Action Stale Labeller 

provides a description of the 

actions of the Intending Agent 

2. The sensor detects the Action 

State Data and makes any 

rudimentary transformations 
necessary 

' 3. The Action State data are 

passed to the Intention Inferencer 

where they are processed and 

Intentions are recognised 

4. The Recognised Intentions are 

passed to the Reasoning module 

Figure 6-4: Pattern Structure: Assisted Sense and Infer. It is essentially a simplification 
of the Sense and Infer pattern through the mechanism of access to the action state of the 
intending agent. 
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6.2.3.8 Consequences 

The benefits of the Assisted Sense and Infer pattern are: 

1. Simplicity As compared with the Sense and Infer pattern the Assisted Sense and 
infer is structurally and computationally simpler. The provision of action-level data 
directly allows the first, and usually the most complex part of the two inference 
process of the Sense and Infer pattern to be removed. 

2. Cognitive Plausibility The Assisted Sense and Infer pattern implements a general 
model of intention recognition that maintains some cognitive plausibility. Short 
circuiting the inference step that transforms state-data into inferred actions sacrifices 
little in the way of cognitive plausibility. 

3. Intentional Ascription Intention recognition with the Sense and Infer pattern 
requires no explicit representation of intention in the agents whose intention is being 
recognised. The intention recognition process is completely one of ascription by the 
recognising agent. Knowledge of the actions of the other agent is provided directly 
but most agent types will have some representation of their actions whereas few 
maintain an internal representation of intent. 

4. Integrated Reasoning When the intention recognition process is part of the wider 
reasoning processes of the agent there is scope for modelling sophisticated behaviours. 
Behaviours where intention recognition is more directly influenced by and in turn 
influences other aspects of the agent behaviour. 

5. Natural Solution The assisted Sense and Infer pattern uses labelling for the more 
objective part and inference for the more subjective part. This results in a more 
natural solution and is a compromise between the extremes of Sense and Infer and 
Clairvoyant but without the need for pattern matching seen in Ecological and As- 
sisted Ecological.. 

but the pattern also suffers from liabilities: 

Coupling The Assisted Sense and Infer pattern introduces a dependency between the 
designed actions of an agent and the intention recognition process of the agent per- 
forming the recognition. This coupling, though present, is not as severe as in the 
Clairvoyant pattern. 

Performance Though a simplification of the Sense and Infer pattern the Assisted Sense 
and Infer pattern will still be relatively computationally complex. 

6.2.3.9 See Also 

The two most closely related patterns to the Assisted Sense and Infer are its more com- 
plicated predecessor, the Sense and Infer pattern, and the Assisted Ecological Recogniser 
that adopts a similar approach to granting access to the activity state of the intending 
agent. 
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6.2.4    Pattern: Ecological Recogniser 

This pattern is nam.edfor the theories of ecological visual perception upon which 
it is based. The Ecological Recogniser agent architectural design pattern imple- 
ments intention recognition in an agent system. The Recognising Agent per- 
ceives directly the intention of the Intending Agent in the patterns of data in 
the environment. This pattern is named the Ecological Recogniser because it is 
inspired by the fundamental principles of theories of ecological visual percep- 
tion [57]. 

6.2.4.1 Example 

Recognising and disambiguating the tactics employed by an adversary in a military 
context is not a simple matter. Situational dynamism, uncertain knowledge and identifica- 
tion problems combine to create an environment where intention recognition is important 
but difficult. A fundamental requirement was that the intention of another entity was de- 
termined prior to the completion of the intention to allow for preemptive response. Even 
if unfettered access to the actions of other agents is available inferring their intention can 
still be intractably complex. When the air combat simulator described in Sections 6.1.4 
was expanded further the scenarios of interest began to include more aircraft. This in 
turn created even more ambiguities in recognising and intention and the designs described 
by the Sense and infer and Assisted Sense and Infer patterns became unworkable. A so- 
lution was required that reduced the design and program complexity without sacrificing 
too much in the way of cognitive plausibility. The main impediment to the continued use 
of inferential reasoning as a means of determining intention was associated with the large 
design and programming effort required to cater for the many possible cases, with all their 
subtle variations, in a robust reliable manner. There seemed little that could be done to 
simplify the problem, it was inherently complex, but confining the solution to the agent 
reasoning was unnecessarily complicating the agent design. By now about one half of the 
agent was devoted to intention recognition. 

6.2.4.2 Context 

The provision of intention recognition in an intelligent agent system. 

6.2.4.3 Problem 

An intelligent agent system must recognise the intention of other agents but has access 
only to the state data. Furthermore the state data is complex and the intentions to be 
recognised are difficult to describe by sets if rules. 

The Ecological Intention Recognition pattern should be used under the following con- 
ditions: 

• no need to reason about detail of intention - a simple announcement of the type os 
intention is adequate 
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• there is no access to data other than the state data 

• mapping the state data to the recognised intentions is complex. 

• there is a lot of state data 

• the agent should reason with high level representations of intention 

• definitions about exactly what constitutes a specific intention are difficulty to codify 
in rules but relatively easier to provide in the form of examples. 

6.2.4.4 Solution 

Implement a recognition module within the agent but considered a part of perception 
that pattern matches the incoming data streams onto learned, stored, or otherwise supplied 
examples of the recognised intention. 

6.2.4.5 Structure and Dynamics 

The basic structure of the Ecological Recogniser Pattern is very simple but this is 
achieved at the expense of encapsulating a great deal of complexity inside the pattern 
matcher. This hides the detail of intention recognition from the reasoning of the agent 
and provides the complete mapping from state data to intention. 

The dynamic behavior of this pattern depends very much upon the particular im- 
plementation technology but in general the pattern matcher takes a data feed from the 
environment of all of the necessary data and maps this into the required descriptions of 
intent. This makes the processing from an architectural perspective almost trivial. Inter- 
nally the Pattern Matcher is expected to recognise intentions in the data available in the 
environment. 

The operation of the Pattern Matcher will depend upon the specific of the chosen 
solution. In Section 6.2.4 an example this technology at work is provided. 

6.2.4.6 Example Resolved 

The computer generated entities in an air-combat simulator were fitted with a pattern 
matching algorithm that provided the capacity for intention recognition to operate over a 
number of adversaries as the simulation unfolded. 

This allowed intention recognition to be trained by examples rather than encoded in 
rules. The subtleties of disambiguating particular cases are lost in the algorithm inside 
the pattern matcher and appropriately selected training sets. Recognised intentions are 
announced to the agent by the pattern matcher simplifying the agent design. For a de- 
scription of the use of this pattern matching technology applied to air combat simulation 
see Heinze et. al. [72] and Pearce et. al. [139]. 

The pattern matching algorithm was fed with data streams from the simulation envi- 
ronment and matched the observed traces against known examples. Successful matches are 
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Figure 6.5: Pattern Structure: Ecological Recogniser. 
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announced as recognised intentions. The agent is substantially simpler in design and its 
reasoning component is simpler. The addition of pattern matching technology complicates 

the system. 

6.2.4.7 Variants 

There are a substantial number of variants possible with this pattern. Variants intro- 
duce feedback between the perception module and its pattern matcher and the reasoning 
module and its general reasoning. Two obvious variants are: 

1. Ecological Recogniser with Feedback The pattern matching can be improved 
if the agent reasoning provides feedback to guide the process. 

2. Sub-Cognitive Ecological Recognition The pattern matcher can be converted 
into a model of the sub-conscious aspects of the agent with the reasoning handling the 
cognitive aspects. This provides a variant of the pattern that provides a sophisticated 
cognitive model that can be used to model a variety of behaviours, including intention 
recognition (See Heinze et. al. [72]). 

6.2.4.8 Consequences 

The benefits of the Ecological Recogniser pattern are: 

1. Modularity Intention recognition is a separate, self contained module within the 
agent's perception. This isolates intention recognition from agent reasoning and 
associates it with perception. 

2. Ontological purity The agent is free to reason with the knowledge level concepts 
that are the output of the intention recognition process. The detailed information 
often required for intention recognition is encapsulated by the perception module 
and abstracted and processed by the pattern matcher. The agent receives and ma- 
nipulates an appropriately high-level representation of the data. 

3. Fuzziness Depending upon the implementation technology selected it may be easier 
to implement probabilistic it is easier to make the intention recognition process 
probabilistic. 

4. Technological Suitability the separation of intention recognition from the rest 
of the agent allows the option of adopting a different technology for implementing 
intention recognition. In this sense it supports the adoption of the 'best tool for the 
job'. 

and the liabilities: 

1. Modularity although the advantages of modularity apply there is consequence that 
can, under certain circumstances, be significant. By separating the intention recog- 
nition process from the agent's reasoning it is more difficult to implement significant 
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interaction between the agent's practical reasoning and the intention recognition 
process. If the intention recognition process should be influenced by the agent's 
reasoning then this pattern is contra-indicated. 

2. Lack of Cognitive Plausibility Although there is some limited support for this 
model of intention recognition in the psychology literature it is difficult to integrate 
this approach to intention recognition within a plausible cognitive model. 

3. Technological Complexity Solutions that adopt the Ecological Recogniser pattern 
may choose dissimilar technologies for the various components—indeed the pattern 
encourages this. Although this may result in the selection of appropriate technolo- 
gies there is a substantial increase in system complexity that results from agent 
constructed with hybrid technologies. 

4. Visibility By encapsulating the intention recognition process some of the visibility 
into the intention recognition process is lost. 

5. Performance Compared with the other intention recognition patterns, the Ecolog- 
ical Recogniser is likely to result in solutions that are computationally expensive. 

6.2.4.9    See Also 

The two closest relatives of the Ecological Recogniser are its simplification, the Assisted 
Ecological Recogniser, and its two most obvious alternatives: the Hybrid Recogniser and 
the Sense and Infer patterns. 

6.2.5    Pattern: Assisted Ecological Recogniser 

This pattern is a variant of the Ecological Recogniser pattern. The recognising 
agent is assisted in its task by virtue of direct access to named representations of 
actions in the environment. The Assisted Ecological agent architectural design 
pattern implements intention recognition in an agent system. The Recognising 
Agent perceives directly the intention of the Intending Agent in the patterns of 
activity of the Intending Agent. The example section is omitted for this section 
because there is no known example of it. In the following Chapter a description 
of a possible design for a system is introduced. 

6.2.5.1 Context 

The provision of intention recognition in an intelligent agent system. 

6.2.5.2 Problem 

When access to the actions of the other agents is available and the relationship between 
the patterns of those actions and the intentions that cause them is complex then the 
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Assisted Ecological Recogniser provides a simplification to the Ecological Recogniser. It 
is a fundamentally different architecture. 

The Assisted Ecological Recogniser pattern should be used under the following condi- 

tions: 

• ontologies well defined, explicit and available 

• action explicitly represented at run-time 

• Only useful if there is a large number of actions and they are available 

• Human using a GUI is a candidate for such a pattern. Button clicks/menu selection 
are the actions and are likely to be accessible rather than resort to the effects that 
those menu selects have. Agent has access to labels of human actions if the gui can 
provide a stream of the mouse clicks etc. One of the few cases where human actions 
are directly accessible to the agent. Accessing joystick/mouse/keyboard is less useful 
perhaps than the resulting state data in something like a computer game. 

6.2.5.3    Solution 

The assisted Ecological Recogniser is a modification of the Ecological Recogniser pat- 
tern that mirrors the modification of the Sense and Infer pattern to generate the Assisted 
Sense and Infer pattern. The basic concept of the solution is to ease the pattern matching 
intention recognition process by providing direct access to the action state. 

6.2.5.4    Structure and Dynamics 

The structure and the dynamics of the Assisted Ecological pattern are shown in Fig- 
ure 6.6. 

6.2.5.5 Variants 

Like the Assisted Sense and Infer the variants of this pattern relate to the information 
that is provided to assist the Pattern Matcher. Rather than action data it might be useful 
to send plan data, function data etc. 

6.2.5.6 Consequences 

The Assisted Ecological Pattern has all of the benefits and liabilities of the Ecological 
Recogniser pattern with the following additions. The single primary benefit of the patterns 
is 

1. Computational Simplicity the intention recognition process is simplified through 
the supply of a pre-recognised set of actions. 
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Figure 6.6: Pattern Structure: Assisted Ecological Recogniser 
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And the pattern also suffers from liabilities. 

1. Usefulness Though the pattern is included here for completeness the practical use 
of this pattern will be limited to applications where the number of actions is large 
and also accessible. Few domains have these properties. Perhaps the best examples 
are those where humans interact with systems via a HCI. 

2. Doesn't make things easier The Assisted Ecological pattern may not improve or 
ease the task of pattern matching. It might be that the detailed state data is actually 
more useful in disambiguating the intentions than the action data. Preliminary 
results from air combat simulation suggest that this is sometimes the case. 

3. Coupling the Assisted Ecological pattern simplifies the processing of the pattern 
matcher at the expense of coupling between the agents. The Intending Agent and 
the recognising Agent are coupled and any modification to one of the agents will 
imply a requirement to modify the other. 

6.2.5.7    See Also 

The Assisted Ecological pattern is a simplification of the Ecological Recogniser and 
adopts a similar simplifying process to the Assisted Sense and Infer pattern. 

6.2.6    Pattern: Clairvoyant 

The clairvoyant pattern is named because the recognising agent simply 'becomes 
aware' of the intention of the other agents. It is neither sensed in the envi- 
ronment nor is it conceptually communication. It is at least superficially agent 
extra-sensory perception. The Clairvoyant agent architectural design pattern 
implements intention recognition in an agent system. The Recognising Agent 
directly senses the intention of the Intending Agent. This pattern is named 
because one agent simply 'becomes aware' of the others intention without any 
resort to deductive, inferential or other forms of reasoning or through any per- 
ceptual interaction with the environment. The awareness of the intention of 
the other agent is not ascriptive and nor is it sensory. Rather than a dis- 
tinct pattern this design is a set of functionally similar patterns which are all 
variants on the same theme. 

6.2.6.1    Example 

During the development of SWARMM, the military simulator described in the intro- 
duction, it became apparent that modelling team behaviour was problematic [170]. In real 
life fighter aircraft on the same side when operating as a team normally remain within vi- 
sual range. This allows them to coordinate behaviour without using the radio by observing 
each others movements. When one aircraft in a team manoeuvres it is usually immediately 
obvious to those other team members in the vicinity what the intention is. Simulating 
this behaviour with intelligent agents requires some form of intention recognition however 
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the implementation, if faithful to reality is extraordinarily complex. Furthermore, unlike 
modelling intention recognition of opponents where ambiguities might be a result of de- 
liberate deception or evasion and in real life there would be much uncertainty, in real life 
pilots are less likely to misinterpret their team members actions. This renders the high 
fidelity simulation of intention recognition of team members largely a waste of resources. 

6.2.6.2 Context 

The provision of intention recognition in an intelligent agent system. 

6.2.6.3 Problem 

When design simplicity and operational performance are high priorities and there is 
scope for the system outside of the Recognising Agent to be designed, it is possible to 
implement intention recognition by adding a labeller to the agents that are to be recog- 
nised. This labeller will provide an appropriate, abstract and simple representation of the 
intention of the agent in a form that is suitable for the Recognising Agent to access. 

There are cases where the intention to be recognised is objective and will be the same 
for all agents that are attempting recognition. In these cases there is little need to duplicate 
the intention recognition functionality in all of the recognising agents when it can be placed 
into the agent that has the intention. Even if the intention is recognised in different ways 
by different agents this can be catered for with a slightly more sophisticated labeller. 

The Clairvoyant pattern should be used under the following conditions: 

• The system, apart from the Recognising Agent, is able to be modified. Specifically it 
is possible to modify the system to provide the Recognising Agent with direct access 
to a representation of the intention of the other agents. 

• The recognised intentions do not depend upon the mental state of the Recognising 
Agent. 

• The specific details of the intention are not required—a high level description is 
adequate. 

• Design simplicity and system performance issues will dominate. 

6.2.6.4    Solution 

By adopting the Clairvoyant pattern the design provides the Recognising Agent with 
a direct representation of the intention of the Intending Agent. The Clairvoyant pattern 
employs a labeller to provide direct access into the intentions of the Intending Agent. 
Conceptually the Recognising Agent simply reads a label that describes the intention of 
the agent but the detail of the implementation can vary widely and depends upon the 
particular internal structure of the intending agent. The possibilities are discussed below 
under Variants. 
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6.2.6.5 Structure and Dynamics 

The structure and dynamics of the Clairvoyant pattern are shown in Figure 6.7. 

6.2.6.6 Example Resolved 

In reality there are many cases where there will be little or no ambiguity in recognising 
the intention of a team member and for these cases it was determined that modelling inten- 
tion recognition by granting one agent direct access into the into internal state of another 
was legitimate. When one agent adopted an intention it was broadcast via a dedicated 
communication mechanism to all other members of the team that were currently within 
visual range. This was different to the normal channels of communication used to simu- 
late radio transmissions and didn't make use of the standard ontology of communication. 
It was a design 'shortcut' to eliminate the need for sophisticated modelling of intention 
recognition in a case where it was deemed to be unnecessary. 

6.2.6.7 Variants 

Variants of the Clairvoyant Pattern relate to the manner in which the labeller is im- 
plemented. Although the pattern can be conceptualised as a labeller the variants are 
architecturally quite different. These variants correspond to the different forms that the 
'labeller' might take as described in Section 6.2. 

1. External Labeller The Recognising Agent is supplied with a representation of the 
intention of the intending agent by a process external to either agent. The external 
labeller acts as a third party model of all of the intention recognition functionality 
required by the system. 

2. Agent Specific Labeller In this case the labeller (rather than simply supply a 
representation of the intention of the intending agent) takes into account the identity 
of the Recognising Agent and supplies a specific label. 

3. Communication Rather than 'label' the agent the Intending Agent communicates 
its intention to the Recognising Agent. Though not really intention recognition in a 
strict sense it is credible possibility as a model of intention recognition. 

4. Interrogation of Intent Similar to the 'communication' case above but the two 
agents enter into a dialog about the nature of intent. This offers the possibility of 
introducing subjective intention recognition. 

6.2.6.8 Consequences 

Some of the benefits of the Labelled Intention Recognition Pattern are: 

1. Simplicity As the simplest imaginable implementation of intention recognition it 
is almost the 'null case' and is arguably better described as intention notification. 
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Figure 6,7: Pattern Structure: Clairvoyant 
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None the less it still offers the prospect of modelling intention recognition when 
simple system and agent architectures are required. 

2. Performance As a result of the simplicity of the architecture and the complete short 
circuiting of the intention execution and intention recognition processes present in 
the other patterns the Clairvoyant will almost certainly offer the fastest performance 
of any of the patterns. 

3. Visibility The straight-forward nature of the Clairvoyant pattern means that al- 
though it might lack realism it is simple to understand, debug, and explain. The 
functioning of intention recognition under this pattern is clearly visible. In systems 
that require well validated, well understood, and robust behaviour this is a distinct 
advantage. 

4. Ontological Purity The Recognising Agent is free to reason with only high level 
representations intention. There is no requirement that the agent manipulate low- 
level data such as the environment state. 

and the liabilities: 

1. Loss of Autonomy Intention recognition is now (at least partly) modelled outside 
of the agent undertaking the recognition 

2. Coupling Agents are no coupled with other agents. This coupling is more or less 
strong depending on the particular variant 

3. Cheating Little cognitive plausibility. It is a model of intention recognition but is 
it really intention recognition. 

4. Lack of Flexibility A change to any one agent may well require changes to all 
others. 

5. Designability The Clairvoyant pattern requires that aspects of the system outside 
of the Recognising Agent be designable. 

6.2.6.9    See Also 

The Clairvoyant is the logical extension of the simplifications of the Assisted Sense 
and Infer and Assisted Ecological patterns. 

6.3    Summary 

This Chapter has presented a catalog of six patterns that collectively provide a range of 
solutions to implementing intention recognition. Experience with these patterns is limited 
but the presentation in this form has several benefits. The look and feel of the object- 
oriented patterns literature was adopted and additionally the UML was used to present 
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the structural descriptions of the patterns. These patterns are then used as the basis for 
the actual systems described in detail in Chapter 7. 

The criteria introduced in Section 6.1.3 can now be used to evaluate the relative ad- 
vantages and deficits of each of the patterns. Clearly there is substantial variability in 
the patterns possible when the detail is established as the system is constructed. This 
evaluation should not be considered to be rigid, a pattern described as computationally 
simple might in certain cases result in a system that is actually quite complex, rather the 
evaluation provides descriptions of the types of system that the pattern is likely to sup- 
port, or the types of systems likely to result from application of these patterns. Figure 6.8 
summarises the evaluation criteria discussed below. 

Module Complexity Each of the patterns will lend themselves to designs and implemen- 
tations that result in more or less complex solutions. Considering just the perception 
and reasoning modules of the agent provides an interesting comparison of the agents. 
Clearly the Clairvoyant pattern is the simplest with an almost trivial perception and 
reasoning module. The Ecological pattern has similar reasoning module to the Clair- 
voyant (i.e. trivial) but places all of the functionality of intention recognition onto 
the perception module. Perception complexity is removed by the Assisted Ecologi- 
cal pattern which can be seen as an intermediate between the Clairvoyant and the 
Ecological patterns. The Sense and Infer pattern reverses the Ecological pattern by 
placing the intention recognition functionality into the agent reasoning resulting in a 
very perception module at the expense of reasoning complexity. The Assisted Sense 
and Infer pattern reduces the complexity of the perception module without compli- 
cating the reasoning module. Finally, the Hybrid pattern has a similar perception 
module to the Assisted Sense and Infer pattern with some added complexity in the 
perception module. 

Module Cohesion Module cohesion is an excellent criteria for assessing an architecture. 
Software engineering tells us that for reuse, maintenance, testing and many other 
reasons high cohesion is desirable [176]. There are two types of cohesion that might 
be considered here. One is the agent system cohesion—the degree to which intention 
recognition is internal to an agent or spread throughout the system. The second is 
the cohesion of the modules that are internal to the agent—and hence a measure 
of the extent to which the intention recognition functionality is spread throughout 
the modules internal to the agent. Three patterns, Sense and Infer, Hybrid, and 
Ecological, isolate the intention recognition functionality inside the agent. The Sense 
and Infer pattern has the added advantage that the decomposition of functionality 
internal to the agent separates the perception and inference aspects of intention 
recognition in a manner that the Hybrid and Ecological patterns don't quite achieve. 
The other three patterns spread the intention recognition functionality across the 
agent system and so score poorly. 

Agent to Agent Coupling Low coupling is the software engineering corollary of high 
cohesion and is desirable for many of the same reasons [176]. Three patterns, Sense 
and Infer, Hybrid, and Ecological have no agent-agent coupling related to the pro- 
vision of intention recognition. In each case interactions occur via the environment. 
The two Assisted patterns require the sharing of information between agents with 
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reference to the activities of those agents and are coupled at the level of agent ac- 
tivity. The Clairvoyant pattern is coupled at the intentional description level which 
ties the functional implementations of the agent even more tightly together. 

Implementation Complexity Estimating the complexity of an implemented system 
based on these patterns is difficult but from with some experience of their application 
and informed guesses based on the likely implementation technologies required for a 
non-trivial application it is likely that the Clairvoyant system will be the simplest, 
the two assisted patterns will follow and the other three being all relatively more 
complex but impossible in general to distinguish from each other. In the following 
section examples of designed and implemented systems illustrate this point more 
clearly and describe examples of these implementation technologies. 

Data Provided to the Perception Module The perception module is "skinny" for 
three of these patterns, little more than a conduit for data entering the agent. The 
data that is presented to the perception module (and hence the agent) is the en- 
vironment state for the Hybrid, Ecological, and the Sense and Infer patterns. The 
two Assisted patterns are presented with the agent state. The Clairvoyant pattern 
receives the agent intention state directly. 

Data Provided to the Reasoning Module Three of these patterns, Clairvoyant, Eco- 
logical, and Assisted Ecological have no component of agent reasoning devoted to 
intention recognition. In those cases intention is determined prior (either externally 
to the agent or in the perception module) and provided directly to the reasoning 
model. The Sense and Infer pattern reasons directly with environmental state data. 
The Hybrid pattern and the Assisted Sense and Infer pattern both reason with 
action state data. 

Data Processing The data processing criteria examines the amount of data transfor- 
mation required to arrive at a recognised intention. Those patterns that maintain 
high-level data descriptions explicitly in the system to support intention recognition 
will clearly do better against this metric. The Clairvoyant pattern requires almost no 
data processing. The two assisted patterns have systems that provide explicit access 
to action state data and require a little more data processing than the Clairvoyant 
pattern but less than the remaining three. 

Computational Performance Estimating the implemented computational performance 
of these patterns in anything but the most general terms is impossible. The Clairvoy- 
ant is likely to be best, followed by the assisted patterns. This is similar to and not 
unsurprisingly closely related to the Implementation complexity criteria discussed 
above. 

Architectural Complexity The architectural complexity criterion combines the cou- 
pling and cohesion criteria and also considers the nature of the information exchange 
necessary between the modules of an implemented system. The Hybrid pattern 
scores highest here because of the comparatively large amount of information ex- 
change likely to occur between the modules. The Clairvoyant pattern is clearly the 
simplest. The other patterns are more difficult to distinguish. 
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Amount of Processing in Reasoning One of the secondary aims of this thesis was to 
explore agent designs that reduced the complexity of the agent by moving aspects of 
the design into the environment. One criteria by which the success of this might be 
judged is to examine the amount of processing related to intention recognition that 
is conducted by the agent reasoning module. Clairvoyant, Ecological, and Assisted 
Ecological score well against this criteria with less processing performed inside the 
agent's reasoning module. The Assisted Sense and Infer and the Hybrid follow, with 
the Sense and Infer pattern, which does all of the intention recognition processing 
in reasoning last. 

Cognitive Model Though not an aim of this thesis each of the patterns support, at least 
partially, some psychological theory of cognition. For example, the Ecological pattern 
supports directly the basic ideas of ecological psychology, albeit in an extreme form. 
The Sense and Infer pattern corresponds to a more mainstream view of psychology- 
that regards perception as very low level. The Hybrid pattern holds a reasonable 
middle ground between these two areas of psychology and accords most closely with 
the ecological psychologists view of cognition. 

Location of Intention Recognition Considered as a single functionality it is intuitive 
to expect that intention recognition would be located, in an architectural sense, in 
a single place, resulting in a system exhibiting high cohesion. A major thrust of 
this thesis, and as a result, several of the patterns, is that the intention recognition 
functionality can be spread across the agent system. Figure 6.8 indicates the location 
of the intention recognition for each of the patterns but of primary interest is the 
idea that for three of the patterns, Clairvoyant and the two Assisted patterns, at 
least part of the function of intention recognition is located outside of the agent. 

The patterns are closely related variants of an architectural design theme that arose 
from a consideration of the environment as being a designed part of the agent system. 
Figure 6.9 shows the relationships that exist between these patterns. Pattern maps provide 
a means of improving understanding of software patterns by describing the relationships 
that exist between them [18]. 

Figure 6.10 is provided as a guide to pattern selection but the detail of the particular 
requirements of any given system will almost certainly dictate a more careful, detailed 
examination. Recent research in this area [117] is adopting a means of developing as- 
sessments of the designers preferences in choosing patterns. This type of approach is a 
more sophisticated evaluation of the simple, arbitrary, and pragmatically grounded guides 
shown here. 

Pattern selection guides such as that shown in Figure 6.10 are likely to be a significant 
part of agent patterns as they provide an indexing into the agent patterns necessary to 
cater for the greater number of closely related patterns that will occur in agent systems 
development. The cognitive patterns literature [55] is foreshadowing this trend. 
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Add Inferencer - Clairvoyant 

Assisted Sense and Infer 

-Add Pattern Matcher 

-Replace Inferencer with Pattern Matcher- Assteted Ecological Perceiver 

-Replace Pattern Matcher with Inferencer- 

Sense and Infer  Move Recognition from Reasoning to Perception—^ Ecological Perceiver — 

Add a Pattern Matcher- Hybrid -Add an Intention Inferencer 

Figure 6.9: A pattern relationship diagram is one way of visualising the relationships 
between a set of patterns. One disadvantage of this type of diagram is that there is no 
clear starting point. This is addressed by pattern selection diagrams of the type shown in 
Figure 6.10. 

Figure 6.10:  Selecting the appropriate design pattern can be assisted by traversing the 
decision tree. 
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Chapter 7 

The Virtual Air Show 

"Learning to fly does not take long—within the first 20 hours of flying you will have 
learned the basic skills. [...] Patterns formed in the first few hours will stay with, you 
throughout your flying life."—Trevor Thorn [167] 

By constructing a number of related but functionally different agent systems it is 
possible to demonstrate the engineering utility of the themes discussed in Part 2.8 and to 
gain experience in the application of the patterns of Chapter 6. This chapter illustrates the 
methodology in practice through the architectural design of a family of flight simulators, 
referred to collectively as the Virtual Air Show (VAS). Six example architectures are 
described, corresponding to the patterns that were presented in Chapter 6. 

Section 7.1 very briefly introduces flight simulators and summarises the characteristics 
of the problem domain that are general to the six architectural designs that follow in 
Section 7.2. 

Section 7.2 describes the architectures of the six variants that result from the appli- 
cation of the design patterns. This description is only detailed enough to illustrate the 
application of the pattern and highlight the strengths and weakness. 

Two of the patterns Sense and Infer and Ecological Recogniser are the most technically 
challenging to construct. From an implementation perspective the other patterns are 
simplifications, hybridisations, or modifications of these two patterns. Examples of the 
Sense and Infer pattern are found in the literature and have been described elsewhere in 
this thesis (Section 2.3). Design descriptions are adequate to compare and contrast the 
application of the six design patterns but a complete implementation of the Ecological 
Recogniser is presented in Section 7.3 for three important reasons: 

1. The elaboration and the weight given to models of perception by this thesis was 
based upon the assumption that 'direct perception' of intention (or some abstract 
properties of agent systems) was possible. Certainly it is theoretically possible but 
in a thesis with a software engineering focus theoretically possible is insufficient. 
It is necessary to show that the architectural benefits claimed for this pattern are 
realisable in a practical system. If no technology exists to actually implement the 
pattern it is of no practical use and the credibility of all related the design patterns 
could be questioned. 
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2. It is technically challenging and, if implemented successfully, provides evidence that 
the other related and simpler patterns could also be implemented. 

3. Some of the implications of design choices are only available by an inspection of a 
completed application. 

Section 7.2.7 discusses the results of this chapter as they pertain to modelling intention 
recognition in a broader context. 

7.1    Introduction 

Flight simulation was chosen as the domain for the demonstration of the patterns be- 
cause it embodies many of the requirements that drive the modelling of intention recogni- 
tion in intelligent agent systems. A primary consideration was the obvious similarity to the 
military simulations that fostered this thesis and the ease with which the lessons learned 
could be mapped back into the military context. Even without this strong organisational 
consideration there are sound technical reasons for the choice. Plausible examples of the 
application of the patterns are applied to model intention recognition of both humans 
and agents. Flight simulation provides a rich environment that must be perceived and 
generates a substantially complex intention recognition task simply by the sheer weight of 
information available for processing. Flight simulators almost always operate as real-time 
or faster than real-time systems placing strong performance requirements on the provision 
of acceptable designs. Performance considered in the context of the available technology 
can play a strong role in the design of systems and so an example that pushes the practical 
performance limits is to be preferred. Further details of these systems have been published 
elsewhere [71, 72]. 

The basic components of flight simulators and the activities associated with circuit 
flight in this section help in setting the context for the description of the architectures that 
follow in Section 7.2 and in providing the required detail for the more detailed elaboration 
of the Ecological Recogniser pattern in Section 7.3. 

7.1.1    Flight Simulators 

The VAS is a flight simulator [22]. It was proposed, designed, and developed as a test 
environment to explore issues related to perception and recognition in agent systems55. 
There is a strong relationship to military flight simulators such as those described in 
Section 6.1.4 though the VAS does not incorporate any modelling or representation of 
weapons or other military-specific aircraft systems. 

Flight simulators come in all shapes and sizes. The highly sophisticated simulators 
operated by large civil airlines and air forces require significant budgets to acquire and 
operate (See Fig. 7.2). These simulators are designed for training pilots in procedures 
that are too dangerous or too costly to perform in real aircraft.   Simpler and cheaper 

Some of the development of the simulation kernel, the environment, and the graphical user interfaces 
was undertaken by Adrian Pearce at Curtain University. 
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HOTASTA (hands on throttle and stick training aids) are available to provide training in 
basic procedures of operating the aircraft without the need for the complex modelling of the 
complete aircraft—these are often referred to as switchology trainers. Cheaper and simpler 
still are the simulators that populate the computer games market [31]. Literally hundreds 
or these are available with varying level of fidelity and functionality. Flight simulators can 
be put to many purposes. The most familiar application outside of computer games is 
for the training of airline pilots in emergency procedures that cannot otherwise be trained 
for. Similarly military pilots utilise them for rehearsing missions, training procedures, or 
developing skills. Flight simulators share a number of basic components: 

User Interface The most visible of the these is the UI that provides the pilot with some 
representation of the cockpit and the environment. Sophisticated flight simulators 
may have physical mock-ups of the actual cockpit to help create an immersive ex- 
perience for the pilot whilst many may provide a virtual representation via a more 
GUI on a single computer screen. The latest flight simulators include virtual reality 
helmets and gloves and even suits that inflate to simulate the presence of g-forces. 
The VAS utilises a single computer screen displaying the cockpit instruments and a 
simple 3d out of the cockpit view that includes some representation of trees, terrain, 
buildings, and a runway. 

Aerodynamic Model The aerodynamic model provides the flight and handling char- 
acteristics of the aircraft. This might include force feedback into the controls and 
realistic performance and handling characteristics over a wide range of flight con- 
ditions. The aircraft aerodynamics can be simulated to varying levels of fidelity. 
A detailed description of the aerodynamic techniques is beyond the scope of this 
thesis but in order to provide a realistic representation of aircraft behaviour for the 
purposes of testing recognition a medium to high fidelity model was chosen. The 
implemented VAS system described in Section 7.3 uses a sophisticated high fidelity 
aerodynamic model sourced from the RAAF's PC-9 training simulator 7.1. The 
aerodynamic model provides data to the simulation environment about the current 
state of the aircraft. This includes the position, velocity, angular and linear rates, 
and the control positions. This is packaged for the agents in a form that reflects 
the information available to a real pilot in a real aircraft by observing the flight 
instruments or by looking outside. 

Environment The model of the environment provides the weather, atmosphere, the 
buildings and runways, terrain, and the landscape. This can vary from the so- 
phisticated 3-D worlds present in both computer games and military simulators to 
simple vector graphics representations for specific purposes. The VAS uses a sim- 
ple 3d world populated by terrain, simple buildings, roads, and an airport with a 
runaway. The terrain/buildings are specified via a file. This allows the location, 
orientation, and the very existence of all of the environmental entities to be rapidly 
modified. 

Simulation Engine/Kernel The part of the software system responsible for scheduling 
the processing and polling of the other components. This might include interfaces 
with other systems. The VAS uses a time-stepped simulation engine that schedules 
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and executes each of the elements in turn. It is not as sophisticated as the event- 
based variable time-step kernels available but meets the requirements of this project. 

In addition the Virtual Air Show incorporates two agents that fill the roles of flying 
instructor and pilot. 

The Instructor Agent The Instructor Agent is an intelligent entity that fills the role 
of a flying instructor. It observes the pilot (whether human or agent) and provides 
advice about appropriate actions to take. If the instructor agent is to provide timely 
useful advice to the pilot then it is advantageous that the advice is provided in the 
context of the intended activities of the pilot. It is not simply enough to recognise the 
pilots actions and provide advice after the fact. In the context of the VAS the pilot's 
intentions are those associated with circuit flight and cover the types of activities 
mentioned in Sections 7.1.2 and 7.1.3. 

The Pilot Agent The pilot agent is designed with a separation between the low-level 
activities of controlling the stick and throttle and the higher level cognitive activities 
of decision-making. Prom a cognitive modelling standpoint this is a natural split. 
In practical terms it is simpler to implement agent decision making in languages 
like dMARS, JACK, SOAR but these are less well suited to the fine control and 
mathematical processing often required when providing agent with the ability to 
control the low-level manoeuvring of an aircraft. 

7.1.2    Circuit Flight 

Every airport has a procedure for take-off and landing that defines a series of pathways 
in the sky that provide the routes by which the pilots leave and approach the airport (See 
Fig. 7.3). These pathways are standard across all airports anywhere in the world and allow 
for pilots to land at unfamiliar airports by following the standard operating procedures. 
These pathways are known as the circuit and a pilot is said to be joining the circuit when 
the aircraft flies onto one of these paths with the intention to land. A set of procedures 
for joining the circuit in order to land or leaving the circuit after take-off is a significantly 
important, part of every novice pilots basic training [167]. During pilot training it is 
common for pilots to practice circuit flying by repeatedly taking-off, flying the circuit and 
landing without ever leaving the circuit or stopping the aircraft. The VAS was designed 
as a methodology demonstrator and makes use of the flight training domain to provide 
useful examples of the engineering practices proposed in this thesis. 

Circuit flying involves taking-off, flying a roughly rectangular course and landing, see 
Figure 7.3. Some detail of the elements of a circuit are presented here as they provide 
valuable background for understanding the design choices presented in the following sec- 
tions. 

The basic components are: 

Take-ofF and Climb The aircraft is powered up and flown into the wind along the run- 
way.   At an appropriate speed the pilot pulls back on the stick to raise the nose 
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Figure 1.1: The aerodynamic model from a current PC-9 military simulator was used for 
the development of the VAS. The PC-9 is a current Royal Australian Air Force training 
aircraft. Shown here are the Roulettes, the RAAF's aerobatic display team that currently 
fly the PC-9 aircraft. The aerodynamic model provides a six-degree-of-freedom simulation 
of the aircraft and includes landing gear effects, flaps, and the dynamics of stalled flight. 
These features provide the detail necessary for simulating circuit flight. 
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Figure 7.2: Military flight simulator typical of those utilised by modern defence organisa- 
tions. These simulators provide comparatively safe and cheap training in procedures, tac- 
tics, and missions for combat pilots. An increasingly important aspect of these simulators 
is the provision of computer generated forces as virtual opponents. Intention recognition 
has been identified as an important addition to these systems. 
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of the aircraft and initiate the lift-off. Following this is the initial climb to a safe 
manoeuvring height. During this climb the landing gear will be retracted and the 
flaps are returned to their undeployed setting. 

Turn to Cross wind Leg At a predetermined height, generally 500 feet above ground 
level (AGL) the aircraft is turned ninety degrees to the left56. This turn is a gentle 
turn, typically twenty degrees angle of bank. After this turn is complete the fuel 
pump, trim and flaps are checked and the climb is continued until circuit height is 
reached, usually 1000 feet AGL. 

Crosswind Leg The crosswind leg requires the pilot to fly at constant altitude at right 
angles to the runway. Because the wind is blowing from the right hand side of the 
aircraft it may be necessary to slightly angle the aircraft into the wind to remain on 
course. 

Turn to Downwind Leg The turn to downwind leg is a medium turn at constant circuit 
height (1000 ft AGL). 

Downwind Leg The downwind leg is flown at constant altitude and speed. During the 
downwind leg the pre-landing checks are initiated and a radio call is made announcing 
the intention to land. 

Turn to Base Leg Once the runway threshold passes abeam of the aircraft the descent 
may be commenced. Though it is more common to commence descent only after 
the turn to base leg is completed. One of the more difficult elements of the circuit 
is judging the point at which to commence the turn onto the base leg. The turn 
should be commenced when the touchdown point on the runway lies about 30 degrees 
behind the aircraft. In strong winds the turn should be commenced sooner as there 
will be a tendency for the wind to push the aircraft away from the runway as the 
turn is performed. 

Base Leg and Turn to Final During the base leg a descent is commenced from 1000ft 
AGL to about 500-600 ft AGL. At an appropriate point a gentle turn onto final is 
commenced. At the completion of this turn the aircraft should be aligned with the 
runway and at a minimum of 500ft AGL. 

Final, Descent and Landing The final should be flown at a constant rate of descent 
judged to cause the aircraft to touchdown near the beginning of the runway. The rate 
of descent is controlled with the throttle. As the aircraft approaches the touchdown 
power can be cut and the aircraft is 'flared'. The pilot pulls back on the stick so that 
the descent rate is reduced and the aircraft flies just above the ground, gradually 
losing speed until it touches down. 

As part of the general documentation of the system domain the UML was used to 
document this knowledge of the domain and to highlight the aspects of the domain relevant 
to the flight simulation development. When simulation software is developed (or any 
software that models reality) it is important to maintain adequate documentation of the 

56Left hand circuits (such as that shown in Fig. 7.3) are most commonly used at airports. Occasionally, 
when geography, traffic, weather or other conditions dictate, circuits may be flown to the right. 
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Figure 7.3:  The basic elements of a standard circuit   The circuit can be joined at any 
point. 

real-world aspects so that simplifying assumptions and modelling choices can be clearly 
documented57. 

7.1.3    The Circuit in More Detail—Turn to Base Leg 

One of the more difficult judgements that a novice pilot must make when flying a 
circuit is the point at which to commence the turn onto base leg. 

When to turn from the down wind leg onto the base leg is one of the more difficult 
decisions that a student pilot must learn to make. As this particular phase of the circuit 
will form the basis for examples throughout this chapter more detail is provided here. 

The Downwind leg is a critical part of the circuit. It is flown parallel to the runway 
and allows the pilot time to commence the checks for landing, observe the condition of the 
runway and the wind gauge the wind strength and direction. During the downwind leg 
flaps trim and mixture are set fior the descent to land. Once the runway threshold passes 
abeam of the aircraft (as shown in Fig. 7.4) the pilot may commence a descent. When the 
runway is about 30 degrees to stern a medium turn onto base leg is commenced. 

Difficulties arise in becoming familiar with the geometry and judging the turn point 
because subtle shifts in wind direction can vary the observed angles as the aircraft. Even 
if the wind is from directly astern the aircraft it is important to accurately judge the wind 
strength. If the wind is strong it will push the aircraft further down range of the runway 
during the turn. So that the aircraft remains close enough to the runway the turn should 
be commenced earlier. 

Though there is a natural predisposition to use landmarks at familiar airports to judge 
the turn points pilots are trained to estimate wind strength and direction and use only 
the runway to judge the best turn-point. 

57It is left for future research to develop the case for the UML as a modelling language for capturing 
simplifying assumptions in simulation development. 
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Figure 7.4-' The important components of the down wind leg of the circuit. 

7.1 A    Intention Recognition in the Virtual Air Show 

Intelligent agents are incorporated into the Virtual Air Show in two roles: as flying 
instructors; and as pilots. Variants of the system that allow humans to fly the aircraft are 
included. The core functionality associated with instructing the pilot and reasoning about 
the appropriate advice to give is written in some desirably high-level agent language using 
high-level agent concepts. Intention recognition is provided to the Instructor Agent to 
improve its ability offer timely advice to the pilot. The intentions that the instructor must 
recognise are those related to the behaviour of the pilot and the actions that are taken 
whilst flying the aircraft around a circuit. The full complexity of the possible intentions are 
not addressed in this thesis but the description of the circuit flight in Section 7.1.3 provides 
an indicative example of the types of behaviour associated with intention recognition. 

7.1.5    Virtual Air Show Variants 

The flight simulation described here is just one of the many types of agent systems 
that might require intention recognition. The obvious application domains are; computer 
games; military simulation and threat assessment systems; and personal digital assistants. 
The implications of this research for these domains are discussed in Chapter 8. 

The distinguishing feature of the VAS is the provision of an agent within the system 
responsible for acting as a flying instructor for the pilot. There is evidence that an intention 
recognition capability supporting instruction of this kind greatly improves their ability to 
provide timely relevant advice. Whether or not this claim is justified is outside the scope 
of the thesis, but assuming that there is some basis for it, a requirement of the VAS is 
that the instructor agent have the ability to recognise the intention of the pilot. The 
following examples then illustrate different variants of the VAS that both characterise the 
types of constraints that might be placed on agent systems and the engineering solutions 
to intention recognition that might result when the six patterns developed earlier in the 
thesis are applied. 

To illustrate the simplifications that can be made when engineering agent based systems 
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that offer more design freedom the second, fourth and sixth builds move the role of the pilot 
from that of a human interacting with the system to that of an intelligent agent operating 
inside the system. With the 'pilot' now an agent within the system there is potential to 
short circuit the intention recognition process by direct inspection of the pilot's internal 
states. 

7.1.5.1 Version One: Ecological Recogniser 

In the first example (Section 6.2.4) an interactive system is presented58. The func- 
tionality of the first build of the VAS is not that dissimilar from commercially available 
flight simulators for personal computers. The notable difference is in the addition of a 
software agent to guide the pilot through the flight. This agent will be referred to as 
the 'instructor-agent' and plays a role similar to the instructor of a student pilot learn- 
ing to fly circuits. Amongst other functionality the instructor-agent must recognise the 
intention of the human pilot so as to best assist in the activities associated with taking 
off and landing a light aircraft. It is the description of the design and implementation 
of this intention recognition that is the focus of this Chapter. The agent is watching the 
pilot's manoeuvring and determining the best advice to give based upon the recognised 
intentions. The agent must recognise the pilot's intention as early as possible, so that the 
advice might be timely. The agent does not know in advance what the pilot will do and 
there is no communication from the pilot to the agent. Messages from the agent to the 
pilot are conveyed via a speech synthesis utility. This example illustrates the application 
of the Ecological Recogniser pattern from Section 6.2.4. 

7.1.5.2 Version Two: Assisted Ecological Recogniser 

The Assisted Ecological Recogniser pattern from Section 6.2.5 results in a design which 
is closely related to the first variant. Two variants of this pattern are described. One in 
which the pilot is an intelligent agent and one in which the pilot is a human. These two 
examples illustrate the possibility for the recognition process to gain access (in some cases) 
to a representation of human action. 

7.1.5.3    Version Three: Sense and Infer 

The third example redesigns the VAS to integrate a reactive intention recognition 
system into the agent reasoning. This has advantages. It allows the cognitive aspects of 
the agent's operation to more directly influence the recognition process. It has the effect 
of moving the line dividing perception and cognition toward perception. The perception 
module is now required to recognise not the entire intention but temporally, spatially, 
and conceptually smaller elements from which the intention recognition process might be 

The interactive simulation community deals with systems that include some human element. Typically 
these systems are designed specifically for training, rehearsal, or planning and include the human as 
an active participant in the system. Constructive simulation deals with systems that have no human 
component. Often these simulations are used for operational analysis and explore large parameterised 
spaces through monte-carlo or other operations research simulation techniques. 
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developed. This example illustrates the application of the Sense and Infer pattern from 
Section 6.2.2. 

7.1.5.4 Version Four: Assisted Sense and Infer 

The fourth system labels the 'actions' of the pilot to simplify the inferential reasoning 
required in the previous example. This example illustrates the application of the Assisted 
Sense and Infer pattern from Section 6.2.3. 

7.1.5.5 Version Five: Hybrid 

Version five presents the Hybrid pattern from Section 6.2.1. As the name implies this 
is a pattern that results from a combination of the Ecological Recogniser and the Sense 
and Infer patterns. 

7.1.5.6 Version Six: Clairvoyant 

Version Six of the VAS describes the system design that results from the application 
of the Ecological Recogniser pattern from Section 6.2.6. Because of the wide variety of 
implementation possibilities with this pattern four different variants of this pattern are 
described. 

7.2    Six Architectural Variants 

This section provides an architectural design description for each of the six variants of 
the VAS. Because the architectural patterns are fundamentally suited to different types 
of systems the variants are chosen to best illustrate the benefits offered by the patterns. 
This introduces an artificiality: the systems were chosen to present the patterns rather 
than the patterns being chosen to best suit the systems. It would have been possible to 
invent a set of requirements to justify pattern selection but that is potentially misleading 
and a more informative approach is to simply present the system and then describe the 
strengths and weaknesses of the architecture. 

These architectural descriptions compose three sections: 

1. an overview of the particular system; 

2. A description of the major architectural components with an accompanying diagram 
and an indication of the interactions between the components 

3. A discussion of the implications of the architectural pattern for the system. 

System designs appearing in this part of the thesis are described both in natural 
language and with the UML. This demonstrates the utility of the UML in assisting in 
the design of agent systems. The UML is a modelling language and does not presuppose 
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or specifically support a methodology (despite its close links with 00 and the Rational 
Unified Process) but the UML is rapidly becoming a software engineering design standard 
for object oriented development [155] and most practicing software engineers and virtually 
all new graduates will have at least some familiarity with the notation. On occasion the 
UML notation is adapted from standard use to meet the specific requirements of agent 
systems development. Efforts have been made to maintain consistency with emerging 
practices for documenting agent systems [132, 136, 73]. 

7.2.1    Hybrid 

This variant of the Virtual Air Show architecture is an application of the Hybrid 
Recogniser pattern (See Section 6.2.1 Figure 7.6). 

7.2.1.1    System Description 

The Hybrid variant of the Virtual Air Show is a real-time, human in the loop, flight 
simulator. The system provides the human user with an out-of-the-cockpit view from a 
light aircraft and an instrument panel display that allows flight of the aircraft around a 
simple three dimensional world (See Figure 7.21 for an actual screen shot of the system 
as it was finally implemented). The user can taxi, take-off, fly around, and land the 
aircraft in a simple three dimensional world. When taking-off, landing, or flying in the 
circuit, an agent operating as & flying instructor provides the pilot with appropriate advice 
about actions to take. By way of a short-hand, and to distinguish it from other agents in 
later variants of the VAS the agent will be referred to as the Instructor Agent. As part 
of its behavioural repertoire the Instructor Agent is required to recognise the intention 
of the human. The virtual air show consists logically of three components: the flight 
simulation engine (including the aircraft and environment models); the graphical user 
interface; and the instructor-agent. Beneath this conceptual description is a software 
architecture that makes use of pre-existing legacy code for the flight simulation components 
and integrates two very different technologies in the construction of the Instructor Agent. 
The finished system will make use of speech synthesis software to allow the Instructor 
Agent to communicate with the human pilot. The system architecture is shown in the 
UML diagram of Figure 6.2. 

7.2.1.2    Discussion 

Flight simulators will nearly always provide some set of physical state data to systems 
hat must connect to it. Indeed the emergence of the Distributed Interactive Simulation 
(DIS) and High Level Architecture (HLA) protocols is a very good example of this. Mod- 
ules are likely to be easier to integrate with flight simulators if they make use of the data 
defined by these protocols. Unfortunately these protocols do not allow for agent-specific 
data that might be required to implement either of the Assisted patterns or the Clairvoy- 
ant pattern. This means that, at least for a simulation domain, there is some advantage 
in opting for the Hybrid, the Ecological Recogniser, or the Sense and Infer pattern. 
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Figure 7.5: The Ecological Recogniser variant is a flight simulator piloted by a human. 
The Instructor Agent observes the flight, and by recognising the intention of the human 
pilot, offers appropriate, timely advice to the user via a speech synthesis utility. 

The adoption of the Hybrid pattern allows for the use of hybrid technologies to im- 
plement the detail of the intelligent agent. This has the advantage of allowing the choice 
of technologies that are well suited to the particular task. In the case of the Instructor 
Agent the task of recognising actions in the streams of aircraft state data is well suited to 
a pattern matching algorithm whereas the task of reasoning about the meaning of those 
actions in the context of recognition is well suited to high-level symbolic agent languages. 

A serious disadvantage of the Hybrid pattern is the dispersal of the intention recogni- 
tion functionality into the perception and the reasoning module. Increased design complex- 
ity results from the lack of cohesion associated with spreading the functionality. Although 
a solution like the Ecological Recogniser Pattern of Section 7.2.4 might also make use of 
hybrid technologies it modularises those technologies and confines them to specific mod- 
ules of the agent. For example, the Ecological Recogniser might well make use of a high 
level, symbolic agent programming language combined with a network based module for 
perception, but the intention recognition functionality is confined to the latter module 
and so there is higher cohesion. The hybrid pattern makes use of an architecture that 
will possibly result in implementations that see two modules, dissimilar in many respects, 
cooperating to provide the intention recognition functionality. This has benefits if the 
two processes (perception and reasoning) are different enough to warrant that split but in 
the context of this thesis the phrase "different enough" refers to the software engineering 
requirements and not to models of psychology or human characteristics. 

7.2.2    Sense and Infer 

This variant of the Virtual Air Show architecture is an application of the Sense and 
Infer pattern (see Section 6.2.2). 
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Figure 7.6: The aircraft state is produced by the aerodynamic model and provided to 
the agent through the simulation environment. This aircraft state takes the form of data 
structures that contain information about the aircraft's geometric position (including its 
position relative to environmental features) its speed and acceleration and other aspects of 
its state (is the landing gear up or down, what angle are the flaps set at). These data 
structures are updated as the aircraft moves.' 
The aircraft state is taken by the sensors and passed to a pattern matcher (indicated here 
by the CLARET module). The sensors are rudimentary models of the aircraft instruments 
and the pilots field of view. Together the sensors and the pattern matcher constitute the 
perception module. The pattern matcher processes the state data checking against trained 
examples searching for patterns in the input data that it can bind to previously trained 
descriptions of pilot action. If the pattern matcher recognises an action it outputs it to the 
reasoning module of the agent. The reasoning module uses the information about the action 
as the basis for its reasoning about the intention of the Pilot. The recognised intentions 
are used as the basis for determining the appropriate advice to offer the pilot. 
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7.2.2.1    System Description 

This variant of the VAS is functionally similar to the Hybrid variant but employs the 
Sense and Infer pattern which results in architectural differences. The resulting system 
will have some of the properties of the system described in Section 2.3. The system 
architecture is shown in the UML diagram of Figure 7.7. A feature of the Sense and Infer 
pattern (and the Ecological Recogniser and the Hybrid) is that they can function equally 
well if the pilot is a human in the loop or an agent. Figure 7.7 shows the system with an 
intelligent agent as the pilot but there is no reason why the Instructor Agent design would 
change if the Pilot Agent were replaced with a human pilot. This idea has been explored 
in military simulations [78]. 

The purpose of a system with an agent for Instructor and Pilot (outside of demonstrat- 
ing the themes of this thesis) is unclear though it is possible to conceive of a pilot-agent 
filling a role testing the previous the human-based system over a wide range of scenarios. 

The resulting is a system in which the instructor-agent will guide the 'pilot-agent' 
around the circuit. The similarities between the two systems are obvious, and a possible 
solution to developing the third system would be to reuse the first in its entirety but 
construct a pilot-agent that mimics the behaviour of the human. Research has been 
published that details ways that this might be implemented with inductive learning [157] 
and using a BDI agent as was used for the instructor agent. 

7.2.2.2    Discussion 

The Sense and Infer pattern encapsulates the intention recognition functionality inside 
the Instructor Agent. This uncouples the Instructor Agent from the Pilot (as is the case 
with the Assisted patterns or the Clairvoyant). The inference process that results in 
recognition occurs completely inside the agent's reasoning subsystem. Any intermediate 
results are available to influence other aspects of the Instructor's behaviour. This allows 
the agent to reason in more sophisticated ways about the nature of the pilot's intentions 
making it is simpler to provide for interactions between intention recognition and other 
agent functionality. 

The architecture is relatively simple but because all of the responsibility for intention 
recognition now lies within the agent's reasoning module the Instructor Agent reasoning 
becomes more difficult to design. This has the follow-on effect of compromising the agent's 
knowledge-level. Recalling Chapter 1 it was stated that an agent should, desirably, make 
use of knowledge-level concepts. This pattern requires the agent to reason with lower level 
aircraft state data. 

Performance issues are possibly problematic for this architectural design. Even though 
the set of possible intentions to be recognised is small there is a significant processing 
overhead in deducing the actions that have been undertaken by the pilot from the aircraft 
state data. There is enough variability in many of the seemingly simple manoeuvres to 
create significant challenges in codifying the recognition as a set of rules. 
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Figure 7.7: The aircraft state is produced by the aerodynamic model and provided to 
the agent through the simulation environment. This aircraft state takes the form, of data 
structures that contain information about the aircraft's geometric position (including its 
position relative to environmental features) its speed and acceleration and other aspects 
of its state (is the landing gear up or down, what angle are the flaps set at). These data 
structures are updated as the aircraft moves. The update rate is a function of the particular 
aerodynamic model and for most flight simulators is between 10 and 30 Hz. 
The aircraft state is taken by the sensors and passed to an action inferencer. The action 
inferencer and the subsequent intention inferencer are both modules of agent reasoning. 
The reasoning module uses the information about the intention to pilot to provide the 
necessary advice. 
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Figure 7.8: The action state is produced by the action labeller and provided directly to the 
agent. The action state is taken by the Agents reasoning module—in this case the intention 
inferencer where it is used as the basis of reasoning about the intention of the Pilot Agent. 
If the pattern matcher recognises an intention it outputs it to the reasoning module of the 
agent. The reasoning module uses the information about the intention to pilot to provide 
the necessary advice. 

7.2.3    Assisted Sense and Infer 

This variant of the Virtual Air Show architecture is an application of the Assisted 
Sense and Infer pattern (See Section 6.2.3 and Figure 6.4). 

7.2.3.1 System Description 

This variant of the system is identical to that described in Section 7.2.2 with the 
exception that it will make use of an addition to the Pilot Agent that will label the agent's 
actions so that these might be used by the Instructor Agent. The system architecture is 
shown in the UML diagram of Figure 7.8. 

7.2.3.2 Discussion 

This version of the VAS represents a half-way point between the extremes of the 
Clairvoyant and the Sense and Infer pattern. As a VAS architecture it tends to acquire 
the advantages of both at the same time avoiding the problems of either. The attaching of 
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labels to actions seems intuitively less subjective. Though the reason for an action might 
be subjective the action itself is likely to be more objective. Placing labels on things 
that are not likely to be interpreted differently by an agent under different internal states 
removes many of the potential modelling issues. In this case the actions that were labelled 
are obtained from the internal processing of the pilot agent. 

Using inference in the reasoning model to provide the recognition of intention data 
based on a knowledge of the actions is a more appropriate design. The Assisted Sense and 
Infer benefits more from the assistance than the Assisted Ecological Recogniser does. 

The task of inferring intention based on a knowledge of the actions is sensible for a 
Pilot Agent where a more abstract representation of action is available but for a human 
agent it is less practical. One possible variation of this system is to replace the Pilot Agent 
with a human pilot and to use the mouse and keyboard as the representation of the action 
states. This variant is explored further in Section  7.2.5. 

The architecture has linked the intention recognition process with the pilot actions. 
This has coupled the two agents and a modification to any particular actions that might 
be used by the Pilot Agent require corresponding changes to the Instructor Agent. 

7.2.4    Ecological Recogniser 

This variant of the Virtual Air Show architecture is an application of the Sense and 
Infer pattern (see Section 6.2.4). The application of this architectural pattern is explored 
in more detail in Section 7.3. 

7.2.4.1    System Description 

This variant of the VAS is the one taken to implementation in Section 7.3, consult 
that section for more details. This variant of the VAS is similar in functionality to the 
Hybrid variant. The Hybrid makes use of its perception module to recognise actions which 
are then processed into intentions by the reasoning module. The Ecological Recogniser 
takes the jump from state data to intentions in a single step and voids the need for 
any reasoning about intention. The architecture shown in Figure 7.9 shows the major 
components and their interactions. Understanding the design of intention recognition is 
explained by tracing the data flow through the system whilst focussing on the central role 
that perception plays in this design. 

7.2.4.2    Discussion 

A significant software engineering advantage lies in removing the need for an agent to 
be explicitly provided with a capability for intention recognition inside its cognitive archi- 
tecture. Instead a sophisticated pattern matching algorithm allows the intention-instances 
to be demonstrated rather than explicitly coded. Thus the task of specifying the rules 
that govern intention recognition becomes a demonstration task and not a specification 
task. 
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Figure 7.9: The aircraft state is produced by the aerodynamic model and provided to 
the agent through the simulation environment. This aircraft state takes the form of data 
structures that contain information about the aircraft's geometric position (including its 
position relative to environmental features) its speed and acceleration and other aspects 
of its state (is the landing gear up or down, what angle are the flaps set at). These data 
structures are updated as the aircraft moves. The update rate is a function of the particular 
aerodynamic model and for most flight simulators is between 10 and 30 Hz. 
The aircraft state is taken by the sensors and passed to a pattern matcher. The sensors are 
rudimentary models of the aircraft instruments and the pilots field of view. Together the 
sensors and the pattern matcher constitute the perception module. The pattern matcher 
processes the state data checking against trained examples searching for patterns in the 
input data that it can bind to previously trained descriptions of pilot intention. If the 
pattern matcher recognises an intention it outputs it to the reasoning module of the agent. 
The reasoning module uses the information about the intention to pilot to provide the 
necessary advice. 
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A modelling advantage lies in the combination of a high level symbolic reasoner to 
manage the cognitive aspects of the agent and a sub-symbolic machine learning algorithm 
to manage the sub-cognitive aspects associated with perception and recognition. By ap- 
plying appropriate technologies to these two distinct parts of modelling human behaviour 
a more realistic total model results [120]. 

A sophisticated model of perception that maps the data in the environment into that 
required by the reasoning module of the agent removes the need to modify either the 
environment or to add an inferencing capability to the agent. Thus although this variant 
has a highly complex perception subsystem the environment could be left unmodified 
and the agent design could be implemented without needing to consider the intention 
recognition problem. The system is independent of the embodiment of the pilot-human 
or agent, it makes no difference. This feature is shared in common with the Sense and Infer 
pattern and the Hybrid. The two Assisted patterns can potentially operate with human 
pilots but the design is both conceptually and practically more difficult to conceptualise. 

A perception module that must pattern match against the incoming data streams will 
not be a simple system. It is computationally feasible in a single agent system such as the 
one demonstrated here (see the implemented example in Section 7.3) but in more complex 
multi-agent systems (many of which employ dozens of agents) the overhead associated with 
the greater number of agents will be problematic. When a machine learning system must 
be trained with examples, as is the case with CLARET (again refer to the implementation), 
there is a resulting validation challenge that might not be easy to solve. For non-critical 
systems this might be acceptable but for systems that require a high degree of robustness 
this might be true. 

Integrating the pattern matching software with reasoning module will present integra- 
tion issues. The likely mix of technologies, the different data abstractions and the control 
of processing will combine to create a complex system integration. 

By removing the intention recognition functioning from the agent cognitive reasoning 
and placing it into the perception module there is little opportunity for the agents reasoning 
to influence the recognition process. Solutions for this specific architecture have been 
proposed elsewhere and this is a problem that has been encountered by many other AI 
systems. 

7.2.5    Assisted Ecological Recogniser 

This variant of the Virtual Air Show, is an application of the Assisted Ecological 
pattern (See Section 6.2.5 and Figure 6.6). 

7.2.5.1    System Description 

This variant of the VAS is similar, as the name suggests, to the Ecological Recogniser 
(Section 6.2.4). The Assisted Ecological pattern makes use of the action state of the 
intending agent rather than the environment state. In the context of the VAS this implies 
that the pilot's actions are the source of the perception and not the physical state of the 
aircraft. The architectural design reflects this change by providing the perception module 
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Figure 7.10: This variant of the VAS allows the Instructor Agent direct access to the 
actions of the pilot. These actions are the throttle and stick movements in the case of a 
real pilot or to a more suitable abstract representation in the case of an intelligent agent 
pilot, of the pilot. Inaccessible in the real world, the time histories of these data may also 
be indicators of the pilot intent. Preliminary experiments indicate that, in fact, CLARET 
performs poorly with these data (see Section 7.3). The state of the controls, the mouse 
and keyboard, inputs are sensed and passed to a the pattern matcher. The state data are 
processed for the patterns of inputs that can be bound to recognition of intention. If an 
intention is recognised it is announced to the Reasoning module. The reasoning module 
uses the information about the intention to pilot to provide the necessary advice. 

with a data stream from the mouse and keyboard that are used to fly the aircraft. In 
every other respect the architecture is the same. Quite simply then this system can be 
considered as a flight simulator where an agent uses a perception module to recognise the 
pilots intention by observing the use of the controls. The system architecture is shown in 
the UML diagram of Figure 7.10. 

7.2.5.2    Discussion 

Knowledge of the agent's actions (in this case the stick and throttle positions and any 
mouse and keyboard commands) are easily accessible within the existing simulation with 
very little modification. This combined with the reduced data set provided to the pattern 
matcher (eight variables are required to characterise the control inputs compared with as 
many as twenty to characterise the aircraft state) promises to simplify the processing of 
the pattern matcher and improve performance. 
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Preliminary experiments indicate that the recognition process performs no better with 
time histories of the control inputs than it does with the aircraft state. In several instances 
it significantly under-performed. Investigating this is beyond the scope of this thesis but 
it almost certainly a particular property of the flight simulation domain. Intuitively the 
position of the aircraft would seem better indicators of the intention of the pilot than the 
control movements that led to the manoeuvring. There may be many instances where the 
feeding the action data into a pattern matcher may result in substantial benefits59. 

There is no credible argument from cognitive modelling for adopting this architec- 
ture. Except for the implausible case of a flying instructor actually watching a students 
throttle and stick positions rather than the instruments and the environment. Unlike the 
Ecological Recogniser pattern which can be justified by reference to ecological psychology 
or naturalistic decision making, the Assisted Ecological Recogniser pattern is difficult to 
justify from a standpoint other than software engineering pragmatism. 

Consider a variant of this version with an intelligent agent replacing the human pilot. 
If the pilot agent had an architecture like that shown in Figure 7.11 then the possibility 
exists for a more abstract set of actions to be sent to the pattern matcher. 

7.2.6    Clairvoyant 

This variant of the Virtual Air Show architecture is an application of the Clairvoyant 
pattern (see Section 6.2.6 and Figure 6.7). 

7.2.6.1    System Description 

This variant of the VAS is another example of the Pilot Agent based system. This 
example of the VAS requires the pilot to allow direct access to a representation of its 
intentions. This direct access effective short-circuits the intention recognition process. 
This is a strong example of the simplicity that can be achieved through a reconsideration 
of the engineering of agent systems. 

This variant, the simplest of all, reduces intention recognition to simple communication. 
In practice this might be implemented in a number of different ways but fundamentally 
there is no need for the instructor agent to perform any reasoning about intention at all. 
The pilot simply informs the instructor of his/her current intention. 

The system architecture is shown in the UML diagram of Figure 7.12. The architecture 
is so simple that it requires almost no explanation. In the detail of the implementation 
there is scope for interesting variations on the architectural theme. 

Experiments, outside the scope of this thesis, conducted with the implemented system described in 
Section 7.3 suggest that if the pilot flying the flight simulator is not skilled then intention recognition 
based on the control inputs offers better performance, but if the pilot is skilled, the aircraft trajectory is 
preferred. Indications are that a carefully selected combination of the two data sources results in better 
performance by the pattern matcher. Preliminary results have been published elsewhere [72]. 
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Figure 7.11: A variant of the Assisted Ecological pattern shown in Figure 7.10 replaces 
the human pilot with an agent. If the Pilot Agent implements an architecture like that 
shown then a more abstract representation of action than is available. This supports a 
more appropriate use of this pattern. 
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Figure 7.12: The Clairvoyant architecture is almost trivially simple. The Pilot Agent 
is provided with an intention labeller. The Instructor Agent is provided directly with an 
indication of the intention of the Pilot Agent. 

7.2.6.2    Discussion 

This is the simplest implementations of intention recognition. One agent can sense 
the intention of the other directly. Conceptually this is by reading a label that the agent 
attaches to itself, in practice it might be achieved by directly accessing the internals of 
the agent, receiving a broadcast transmission, or many other options. The Clairvoyant 
pattern will clearly provide the least computational effort. The solution may not be 
intuitive from a cognitive science perceptive but it is an obvious solution if simplicity is 
required. The solution is compatible with communication. An extension of the VAS that 
required a dialog between the pilot and the instructor about the nature of the pilot's 
intention would be compatible with this pattern. Many variants of the basic pattern are 
possible providing various possibilities with different properties. The system can scale 
almost indefinitely. The computational requirement is so low as to render any overhead 
inconsequential. The agents are very strongly linked. It is difficult to model errors in 
recognising intention because the existence of intention originates with the pilot. It is 
similarly difficult to model delays in recognising intention and other human performance 
aspects. Intention recognition is inherently subjective. When an agent displays a single 
indication of its intention all subjectivity, chance of error, and the ability to model the 
effect of the internal state of the recognising agent on the recognition process is lost. If 
the Instructor requires detail about the intention of the pilot it must either be provided 
(violating the basic premise of the pattern) or it must be inferred compromising many of 
the stated benefits of this pattern. 
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7.2.7    Architecture Summary 

This section presented a set of six architectural design for the Virtual Air Show. Fig- 
ure 7.13 summarises the architectures that result from the application of the patterns. 
The variation in the attributes of these architectures is large. Together they span a large 
design space that provides the designer with a variety of options. 

7.3    Description of an Implemented System 

This section discusses pertinent details of the complete implementation of the Ecolog- 
ical Recogniser variant of the VAS. The development of this system, although it was a 
technology demonstrator and likely to have no application outside of this research, was 
undertaken with a strong focus on software engineering. Every development stage was 
comprehensively documented. Only a small subset of the software documentation is pre- 
sented here and the following sections provide a glimpse into the analysis and design 
process with a bias toward those aspects of the system that are concerned with intention 
recognition. 

This entire section is not central to the core of the thesis and many of the details have 
been published elsewhere [72, 71]. The details are presented here because they elaborate 
some of the claims on the periphery of this research and because the existence of an 
implemented version of this system is necessary to establish the technical feasibility of the 
design patterns. 

Section 7.3.1 presents a very brief account of the manner in which the UML might be 
used to document the intentions of intelligent agents in a system. 

The core of the flight simulation system is fairly routine software running an aero- 
dynamic model sourced from a military flight simulator and an Open-GL visual display 
system that provides a three-d out-of-the-cockpit view of the environment and a represen- 
tation of a generic cockpit with the necessary instruments and controls (See Fig. 7.21). 

7.3.1    Specifying the Intentions to be Recognised 

Specifying the requirements that are to be recognised is an important part of modelling 
intention recognition for intelligent agent systems. A possible approach to analysing and 
the requirements to be specified was canvassed briefly in Section 5.2.4 and an example of 
the use of the UML as an aid to documenting intentional agent behaviour is included here 
for completeness. This specification was undertaken as part of the software engineering 
of the Ecological Recogniser variant of the VAS and is included here as an aside to the 
central core of the thesis. 

The analysis phase of software development is concerned with advancing the under- 
standing of the requirements that specify the system to be built toward an architectural 
and then a subsystem design. A detailed look at the analysis phase of the development 
of the VAS is outside the scope of this thesis but it is important to demonstrate that the 
types of software processes necessary for selecting a suitable design pattern are available. 
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Figure 7.J5: i4 comparison of the architectures that result from the application of the 6 
patterns to the Virtual Air Show 
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Analysing the requirements of an agent system can be undertaken in many ways and 
there are several well reasoned approaches to Agent Oriented Analysis that are emerg- 
ing [185, 182]. The approach presented here is to adopt the basic notations of the UML 
and to apply the standard analysis techniques that are associated with the application of 
the UML to the agent components. This allows a fundamentally similar triplet of tools, 
techniques, and methodologies to manage both the agent and non-agent aspects of the 
software. Many developers of agent oriented methodologies appear to underestimate the 
interplay between agent and non-agent components of their systems and consequently fail 
to provide the design time support for modelling agents and environments in an integrated 
manner. Approaches like Prometheus [182] and Gaia [185] may be appropriate for agent 
exclusive systems but there is little support given for developing systems were the design 
must trade-off functionality between agent and non-agent components. This problem is 
being addresses in a bottom-up manner with those looking to integrate agent and non- 
agent software development at the tool and language level (the AUML being an excellent 
example) and those looking at integration through methodology engineering (an example 
is the work of Juan et. al. [89]). 

Three types of analysis were performed: a standard use case analysis was used to help 
specify the requirements and was analysed to develop the system design; an intentional 
analysis (in practice a modification of the agent use case analysis suggested by Heinze, 
Papasimeon and Goss [73, 59]) was used to document the intentions of the actors; and 
finally an intention recognition analysis documented the intentions that were to be recog- 
nised. As suggested in Chapter 5 the second of these is useful even if intention recognition 
is not required because intentional descriptions of agent behaviour are an excellent way of 
documenting the required behaviour. 

The complete software documentation is both voluminous and unnecessary for illus- 
trative purposes so only a small indicative subset of the analysis undertaken is presented 
here. This section documents the high-level requirements of the system by first elaborating 
a primary scenario that is decomposed and described in terms of the intentions present in 
the system. These intentions are documented both with high level descriptions, decompo- 
sition where appropriate and finally by describing the characteristics that can be perceived 
by an agent. These description can, like the intentions themselves be decomposed into 
increasing detail as appropriate. 

This distinguishes this type of analysis, from the traditional use case analysis where a 
number of scenarios are analysed and the resulting use cases indicate some grouping that 
characterises the functionality that system provides to the user (See Fig. 7.14). 

This type of analysis concentrates on providing descriptions of the intentions of the 
agents and the actors in the system. Though this is used here for documenting the in- 
tentions that will be subject to a recognition process there is broader application for this 
type of analysis in the construction of agent systems. 

As discussed in Section 5.2.4 there are methods available for gaining insights into the 
intentions of participants in a scenario. A detailed discussion of these is not relevant here 
and it will be assumed that some appropriate technique can be employed. 

The UML is commonly used to document the use cases and it has many of the features 
required to document intentions at this level. Details for each of the use cases can now 
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be added.   This might be in plain English as below or any of the UML diagramming 
techniques deemed suitable can be employed. 

7.3.1.1    Example Scenario 

In order to illustrate, capture and elaborate the requirements and the intentions in 
the system a number of scenarios will be presented, described, analysed and documented. 
The purpose of this analysis is to allow the determination of exactly what functionality is 
requires and what intentions are present and by what features they might be recognised. 

Consider a scenario where the pilot takes off and flies a circuit. The sequence of actions 
that is occurs during a takeoff, a circuit, and a landing is as follows: 

1. Pilot - Take-off and Climb: The aircraft is powered up and flown into the wind along 
the runway. At an appropriate speed the pilot pulls back on the stick to raise the 
nose of the aircraft and initiate the lift-off. Following this is the initial climb to a 
safe manoeuvring height. During this climb the landing gear will be retracted and 
the flaps may be returned to their undeployed setting. 

2. Instructor Agent - Observes pilot. 

3. Pilot - Turn to Crosswind Leg: At a predetermined height, generally 500 feet above 
ground level (AGL) the aircraft is turned through ninety degrees to the left60. This 
turn is a gentle turn, typically twenty degrees angle of bank. After this turn is 
complete the fuel pump, trim and flaps are checked and the climb is continued until 
circuit height is reached, usually 1000 feet AGL. 

4. Pilot - Crosswind Leg: The crosswind leg requires the pilot to fly at constant altitude 
at right angles to the runway. Because the wind is blowing from the right hand side 
of the aircraft it may be necessary to slightly angle the aircraft into the wind to 
remain on course. 

5. Pilot - Turn to Downwind Leg: The turn to downwind leg is a medium turn at 
constant circuit height (1000 ft AGL). 

6. Pilot - Downwind Leg: The downwind leg is flown at constant altitude and speed. 
During the downwind leg the pre-landing checks are commenced and a radio call is 
made. 

7. Instructor Agent - Advice about turning onto Base Leg: The instructor recognises 
that the pilot is intending to turn onto the base leg. The instructor agent provides 
advice about when to turn. "Commence the turn onto base-leg in about 5 seconds". 

8. The pilot turns onto Base Leg. 

9. the Pilot turns onto the final Leg and lands. 

Left hand circuits are most commonly used at airports. Occasionally, when geography, traffic, weather 
or other conditions apply circuits may be flown to the right. 
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Figure 7.14: Part of the use case model for the Virtual Air Show. The traditional use case 
model describes groups of functionality that the system provides to the use. During a use 
case analysis the focus is on the functionality provided to the user. During the intentional 
analysis shown in Fig. 7.15 the emphasis is on the intentions of the agents and actors 
involved in the scenario. 

7.3.1.2    Use Case Analysis 

A standard use case analysis documents the functionality that is afforded the user of 
the system [155]. This use case diagram groups the functionality into the use cases shown 
and allows them to be documented using the diagramming techniques of the UML. Any 
further detail of the use case analysis is beyond the scope of this thesis but an example use 
case diagram is presented here for comparison with the intentional analyses that follow 
(see Figure 7.14). 

7.3.1.3    Intentional Analysis 

A standard use case analysis documents the functionality that the system must provide 
(Fig. 7.14). An intentional analysis documents the intentions of the actors and agents (See 
Fig. 7.14). The UML is an appropriate language for documenting agent intentions though 
in practice the developer can select any appropriate technique or language. 

For each intention there might be possible variations and selected courses of actions 
based upon the particular circumstances. Conceptually this corresponds to a possible 
worlds view of intention as described by Rao [149] but is also consistent with standard 
approaches for documenting use cases when analysing scenarios [155]. 

The analyst considers the intentions of each of the actors and the documents them in 
the style of use cases. As shown in Figure 7.15 these intentions can be structured into 
sub-intentions. In this case the primary intention is to 'fly a circuit' with sub-intentions 
to 'climb', 'fly the final leg' etc. This simple documentation provides the first specification 
at the intentions that will be observed in the finished system. It might appear similar to 
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Figure 7.15: Part of the model of the intentions of the agents in the VAS. Because the sys- 
tem under construction is a simulation there is a close similarity between this intentional 
description of the system and a domain model of the reality that is being simulated. The 
difference between an intentional description of the domain and the model of the executing 
simulation is related to the simplifying modelling assumptions made in developing the sim- 
ulation. The intentional analysis of a simulation system can be considered a realisation 
of the real world that is simulated. The distinction is an important, if subtle one, and the 
constructs of the UML are adequate for documenting both. 
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statements of required functionality. 
In the case the intention to observe 
the pilot leads to a requirement for 
intention recognition. 

Figure 7.16: Part of the agent intention model for the Virtual Air Show. By treating the 
agent as an actor that interacts with the system in much the same way as actors tradi- 
tionally do in a use case analysis it is possible to document and analyse the interactions 
between the agent and the system. 

a use case analysis but the emphasis is on documenting the behaviours observed as the 
system functions. 

A textual description of the intention is added to provide context and detail. Only 
three are included here: 

Downwind Leg The "downwind leg" intention will be manifested by a period of straight 
and level flight at 1000ft altitude at a certain geometric location with respect to the 
runway. Primarily it will be parallel to the runway and offset to the left by a distance 
of a few hundred feet and be flown in the direction of the wind. During the downwind 
leg the flaps may be set for the descent into the landing and the mixture mill be 
set to rich. If the course changes toward or away from the runway it is a strong 
indication that the circuit is being departed. 

Turn Base Leg The intention to turn onto the base leg follows from the downwind leg. 
Once the runway threshold passes abeam of the aircraft the turn will be approaching. 
There might be a decrease in altitude and the turn will be made when the touchdown 
point is 30 degrees to the rear of the aircraft. If the wind is strong this turn will be 
made earlier. 

Advice about when to turn onto base leg The instructor agent recognises the pi- 
lot's intention to turn onto the base leg and must provide advice about when to 
commence the turn. Possible confusion exists because the pilot might be intending 
to depart the circuit by turning early and flying across the top of the runway or 
extending downwind. 

These textual descriptions may be adequate for documenting the early stages of devel- 
opment but a structured decomposition of the intentions is a necessity for making design 
decisions about intention recognition. Intentions are decomposed into actions. The effects 
that those actions are expected to have in the world are also documented (See Figure 7.18). 
This intentional analysis in synonymous with the agent behavioural modelling of Goss et. 
al. [59]. 
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Figure 7.17: Activity Diagram for the Turn to Base intention. 

7.3.1.4 Intention Recognition Analysis 

Each of the intentions that must be recognised is now documented as shown in Fig- 
ure 7.18. This documentation is based around an elaboration of the features that might 
be useful in performing intention recognition but should also include any constraints or 
requirements on the nature of recognition. 

7.3.1.5 Ontology- 

As the concepts of interest are emerge during the intentional analysis it is possible to 
develop an increasingly detailed view of the ontologies that characterise the system. This 
is the first estimate of the concepts that the agent must reason about and they arise out 
of a consideration of the requirements of the agent that must perform the recognition. In 
a development driven entirely by the requirements of the agent's reasoning these would 
become the specification that the rest of the system must meet. If there is flexibility in 
the design process then the specification of this ontology is an iterative process that will 
arrive at a compromise between the requirements of the agent and the requirements of 
the rest of the system. Standard shared ontologies is a strong example of the requirement 
for an agent to reason about a certain set of concepts. Several researchers have proposed 
extensions to the UML for ontology modelling [36] and so the UML is used for here for 
documenting the ontology. 

The component of the environment ontology relevant to intention recognition is repre- 
sented with the UML as shown in Fig. 7.20. These specifications of the important concepts 
in the system represent the form of the knowledge available in the system and the form 
required by the agent (Secc 7.19). 
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Figure 7.18: Detail of the description of the "Turn to Base Leg" intention. Note that the 
description includes the features that characterise the intention as viewed by the instructor. 
Determining just how these features are to be made available to the agent, in what form, 
and how they are perceived is a key part of the process of engineering intention recognition. 
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Figure 7.19: The agent ontology for the purposes of design. This captures the concepts that 
the agent reasons with that are of concern in designing the interface between the agent and 
the rest of the system. Though used here as a design-time aid in more complex system, it 
might also have run-time utility in providing well designed ontologies that can be switched 
in and out in response to events. 
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Figure 7.20: The environment ontology is a summary of the relevant data available to the 
agent. In larger, more complex systems this ontology is an aggregation of the ontologies of 
the various components that comprise the system. In the case of the virtual air show this 
is unnecessary. 
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Perception has the task of mapping from one system ontology to the agent ontology. 
The agent ontology is retained as a part specification of the agent interface. In more 
complex systems, where communication and perception results from many different sources 
these ontologies might be loaded and unloaded at run time to configure the agent for certain 
activities. 

7.3.2    The Implemented System 

This section provides relevant details of the implemented system. Further details of 
this particular implementation have been published elsewhere [72] and explain in more 
detail than is warranted here the relationship to military simulators. Other variants of the 
VAS are presented in the following sections without implementation details as they are 
unnecessary for the presentation of the application of the design patterns. See Figure 7.22 
for an embellished architectural diagram. 

7.3.2.1 Hardware 

The system was implemented on a 4 CPU 200MHz Silicon Graphics server running 
IRIX6.3 and running a VTX graphics subsystem. 

7.3.2.2 Environment, Aerodynamics and GUI 

The model of the atmosphere, the physical environment and the associated graphical 
representations were reused from an existing flight simulator—FSIM. Detailed descriptions 
of the implementation are outside the scope of the thesis and more information can be 
obtained here [71, 72]. In summary, it implements a fixed time-step simulation synched to 
a real-time clock. The aerodynamic model was reused from a military simulation of the 
PC-9 (see Fig. 7.2). The aerodynamic model is a full six degree of freedom, non-linear 
model, with provision for modelling stall, undercarriage, and flaps. 

FSIM is a flight simulator developed by Curtin University. FSIM can be flown by a 
joystick or mouse and implements a flight dynamic model of a current RAAF training air- 
craft developed at DSTO. The flight simulator provides a three dimensional out-of-cockpit 
view and a generic set of instruments. Atmospheric effects such as wind and turbulence are 
modelled. Input files specify geographic features such as airstrips, mountains, buildings 
and trees. 

7.3.2.3    Instructor Agent Reasoning 

The instructor agent was implemented in the dMARS programming language [42]. 
dMARS is a C++ reimplementation and extension of PRS [179]. It is a subset of Rao 
and Georgeff's BDI model and is well suited to modelling procedural reasoning of the 
type performed by the instructor agent. BDI languages have been utilised in military 
simulation and in domains such as process control, health monitoring and diagnosis, and 
air traffic control scheduling. 
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Figure 7.21: A screen capture from the virtual air show in flight. The graphical aspects 
of the interface development were reused from previously developed systems. The cockpit 
layout his a generic instrument panel that is not intended to portray any particular aircraft. 
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Figure 7.22: The VAS system architecture. An existing flight simulation system is to be 
augmented by the addition of an instructor agent. By correctly recognising the intention 
of the pilot the agent can better advise the pilot. The addition of agents to legacy systems 
that interact with humans is perhaps the most obvious and common class of agent systems. 
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(fact (pilots-intention-is to-turn-onto-base-leg)) 

(and (altitude «altitude) 
(circuit-height «circuit-height)) 

(? (< $altitude «circuit 

(? (and (engine-revs normal) 
(flaps-are setjfor-landing)) 

(? (and (engine 
rpm)(> «engine 

rpnj «engine- 
rpn 2000))) 

P3 

(!   (send-intercon-advilce "climb just a little")) l-inke (! (aend-infeercom-advice 
"reduce speed and maintain circuit height")) 

Figure 7.23: An example dMARS plan from the Instructor Agent. These plans provide 
'recipes' that, determine the means to the goals, or 'ends'. Plans in turn can invoke other 
plans leading to nested structures of instantiated but partially executed plans. These struc- 
tures are the agents 'intentions'. This is consistent with the notion of intentions as a 
commitment to a plan to achieve a goal. 
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A suite of plans [146] was developed that give it the capacity to assist the pilot. The 
knowledge required by the Instructor Agent about how to fly a circuit and the advice to 
provide to the pilot is specified in terms of these plans. The execution semantics of the 
BDI model and dMARS is not relevant but can be referenced [149]. Plans in the dMARS 
system are graphical representations of the procedural knowledge required to complete a 
task [146]. These plans rely on external information for execution. These data take two 
forms. (1) Data from the flight simulator. Typical examples are altitude, heading, roll 
angle, pitch angle, engine revs. These data are typical of the types of data that a pilot 
would normally acquire from the flight instruments. (2) Data from the machine learning 
module. Typical examples are; "finished base-leg", "finished take-off roll", and "engine 
failure". These data are examples of the types of data that a pilot infers from examining 
his environment and complex relationships between entities. As these plans execute, they 
follow the progress of the pilot. The agent-instructor issues messages to the pilot guiding 
him through the circuit and advising about the manoeuvres to employ. 

7.3.2.4    Instructor Agent Perception 

The environment will provide a time-stepped feed of variables that indicate the aircraft 
positions, velocities, angles and angular rates, as well as the control positions, switches, 
and settings that are adjusted by the pilot. Together these provide the raw data that is 
available to the instructor agent in recognising the intention of the pilot. These are pre- 
processed to provide the data required by the perception module. The design as described 
requires that the perception module must map these spatio-temporal time histories directly 
into symbolic descriptions of the intentions as they are recognised. 

A pattern matching system, CLARET, was chosen as a suitable means of performing 
the sophisticated mapping required. A brief description of CLARET is included here for 
completeness though the detail is outside the scope of the thesis. Further information can 
be obtained here [137] and specifically with respect to recognising aircraft manoeuvring 
here [139]. 

Machine learning when applied to handwriting recognition has proved very successful 
at recognising spatial trajectories in two dimensional space. Once it is trained, CLARET, 
an algorithm based on relational evidence theory, incorporates temporal aspects in or- 
der to prune the search space dynamically and hence successfully predict the particular 
alphanumeric symbol before it is completed. 

In descriptive recognition, an expert pilot explains the relationships between event 
types specifying a decomposition of high-level manoeuvres - "tell me about these manoeu- 
vres" . For example, flying circuits can be decomposed into take-off, crosswind, down-wind, 
base-leg and final-approach manoeuvres. Pattern matching is then used to bind these 
manoeuvres to traces of simulator activity. The system dynamically binds to different in- 
tentions as they manifest as trajectories of input time series. The technique used is based 
on statistical pattern matching and learning techniques, currently used for on-line hand- 
writing and gesture recognition. In the CLARET algorithm an unknown, segmented, and 
labelled trajectory case is presented to the system together with examples of known tra- 
jectories using a simple polygonal approximation technique. First, relationships between 
trajectory segments are extracted and their relationships calculated. Relational rules are 
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generated that explicitly depict relationships between states. For example, a right-turn 
manoeuvre is defined by a subsequence of different roll-pitch-yaw states (see Figure 7.24) 
over time. 

Start        .... 
Mid 

Finish 

Bank Bank 

Mid tum 

SI.                            S3. S5. 
 ►  • 

Roll. Hilch,                 w                "W      ••— 

S2.                          S4. 
,. A  ,, 

 ► 
S6 

f                           \ 

• +   •   -►   • 
S'l.          S'2.           S'3. 

Figure 7.24: Partitioning a Manoeuvre 

Second, matching techniques relate intentional descriptions to the control actions and 
available information from the displays (instruments and external 'out-the-window' world- 
view). A parser is then used for conversion of events matched using these rules into 
descriptions that are consistent with the syntax of the events and their relationships. For 
example, the turn-to-base leg intention is defined by the relationships of different events 
relative to wind direction, heading and runway position: 

While in context of FLYING-CIRCUIT 
If LEFT-TURN at CRUISING-ALTITUDE and 
If LEFT-TURN overlaps WIND-AT-RIGHT-ANGLES 

Then intention is TURN-TO-BASE-LEG 

This is human-readable output can be used to interactively validate partially enacted 
sequences in the simulator. The system uses inexact (approximate) matching and a 
Bayesian probability network to negotiate between alternative hypothesis, and thus the 
rules are transferable to other airports and under variable conditions (for details of the 
CLARET algorithm see [137].) 

Thus referring again to the example of turning base-leg the pattern matching algo- 
rithm observes is continually supplied with aircraft state information and pilot, control 
information. These spatio-temporal trajectories are matched against a library of pre- 
trained examples and when a match is obtained, (or rather when the probability of a 
match exceeds some threshold) a match is announced to the dMARS agent in the form 
of a direct belief assertion into the agent's database. This assertion triggers a reasoning 
process based upon the recognition of the intent. In the case of the turning-base-leg exam- 
ple it turns out that the geometric relationship of the aircraft to the runway is the most 
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significant data in characterising this particular intention61. 

7.3.3    Real Time Intention Recognition by Pattern Matching 

7.3.3.1 System Integration and Testing 

With well defined interfaces and mature technologies for many of the components the 
system proved to be relatively bug-free, easy to test and system integration was reasonably 
straight-forward. 

The use of a pattern matching algorithm as the primary component of the perception 
module simplifies the software development somewhat because the rules governing the 
mapping from system data to agent knowledge are trained not coded. 

Once the system was integrated and primary testing complete the task of training the 
system to recognise the appropriate intentions was undertaken. 

7.3.3.2 Training 

The training process begins by deciding upon a categorisation, or ontology, of the 
examples to be learned. This ontology then forms the basis for the training with examples 
Of each of the elements provided. This ontology is provided to the VAS in the form of 
a structured data-file that is read-in as a part of intialisation. Thus the training of the 
recognition software is matched exactly to the ontology that defines the intentions to be 
recognised. 

A keyboard command places the VAS into a training mode. In this mode the user se- 
lects one of the ontology elements from a displayed list and then proceeds to fly an example 
of that. The examples chosen need not be manoeuvres as such, although manoeuvring 
may be a big part. As' the aircraft is flown CLARET records data from the simulation 
and stores it as an example of that particular element in the ontology. 

Training proceeds until the elements of the intention recognition ontology have been 
covered. Increasing the number of examples of each of the patterns improves CLARET's 
chances of matching if the expected variation between members of the same pattern are 
expected to be high in practice but also increases the time taken to announce a match. 
If the examples of each pattern encountered in operation are quite similar and if there 
are large differences between the categories then there is less need for more examples. 
Increasing the number of examples results in an exponential computational performance 
penalty. 

In practice between five and ten examples of each pattern were enough. Performance 
did not become an issue until the number of examples rose to approximately forty indicat- 
ing a reasonable amount of computational headroom. The interface between the pattern 
matcher and the simulation systems was configurable to allow user selection of the data 

61Though the position of the aircraft to the runway seems likely to be very important in recognising all 
of the intentions associated with circuit flight experimentation showed that CLARET tended to classify 
based on altitude or speed with runway position being secondary. 
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that was input to the pattern matcher 62. An important part of the commissioning process 
were the decisions concerning the supply of data to the pattern-matcher. This is discussed 
in greater detail later. 

CLARET selects the set of input data those that disambiguate the different patterns. 
There is again a performance penalty for increasing the attributes that CLARET uses 
to differentiate patterns. For this reason it is preferable to use a small useful subset of 
the attributes available. Testing of the system provided insights into pattern matching 
process. 

Speed is a very important concept, perhaps a very close second to altitude, in a pilots 
decision making. Speed, however, proved to be not such a useful classifier of the different 
phases of flight. This is best illustrated by Fig. 7.25 that shows a typical trace of altitude 
versus time for each of the phases of a circuit. Take-off and landing are clearly identifiable 
but other phases of the circuit are very similar. 

A concept that did prove to be useful in classifying the pilot's intention was "range to 
runway" (See Fig. 7.25). From the typical graphs it can be seen that this clearly distin- 
guishes each of the circuit phases. "Range to runway" is not a concept that is immediately 
obvious in selecting the appropriate input data. Range-to-runway is a constructed value, 
being neither a state of the aircraft or of any other component in the simulation but rather 
a relationship between two things. It was added to the system ontology, the design, and 
the interface during this phase of testing when it was discovered during testing that it was 
a good classifying attribute. This is yet another example of how the environment might 
be engineered to assist agent perception. Though this example escaped the design process 
and was not discovered until system commissioning. 

7.3.3.3    Operation 

Once provided with the set of training examples the system is ready for operational use. 
While the simulation is in progress CLARET continuously searches the input data stream 
for recognisable patterns. If a pattern is matched to the exclusion of other possibilities then 
CLARET will report that recognition has been achieved. This is the standard functioning 
mode of the system. 

Greater functionality is also available. CLARET is capable of serving queries from 
the agent regarding the current status of the recognition process. If two or more possible 
candidates remain in the set that CLARET is attempting to match then they can all be 
reported together with a indication of their relative likelihood. If an intention is recognized 
and reported then CLARET can serve queries about the nature ofthat manoeuvre relative 
to its set of trained examples. In this way CLARET can provide extrapolative prediction 
of expected future behaviour and add detail to the nature of the recognised intention. 

Though not tested in this implementation CLARET, with a flat ontology, CLARET 
is capable of recognising hierarchically nested patterns and hence classify intentions at 
various levels of abstraction as long as it has been provided the training examples. This 
means that a more structured ontology can be matched at all levels of the hierarchy. 

62n The data is required to be identical between the training sets and operational runs. 
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Distance from Runway Speed 

Take-off 

Crosswind 

Downwind 

Landing 

Figure 7.25: Sample traces from the trajectories from a circuit flight. The distance from 
the runway is a better attribute for categorising the intentions than speed. Though take- 
off is clearly distinguished by speed the other three phases of the circuit are very similar. 
CLARET uses many attributes to categorise and classify patterns but a computational 
overhead results from selecting a greater number so some care should be taken when de- 
termining appropriate attributes. By analysing the problem and supplying CLARET with 
appropriate constructed variables pattern matching can be improved. Further details are 
beyond the scope of this thesis but it is yet another example of how the environment might 
be engineered to support agent perception. 
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7.3.3.4    Performance 

Processing is delayed to synch to the clock but the time step is not variable so processor 
delay beyond real-time causes slowing rather than jumping. The graphics subsystem is 
updated synchronously and therefore suffers from the same potential problems with real- 
time lag. Fortunately, the system is fast compared with the available hardware with 
more than 400% headroom. The available computational time was partly used by the 
perception subsystem that was also implemented synchronously in the same process. The 
agent, however, executes on a separate process and as the execution platform was multi- 
processor did not impinge greatly upon the real-time capability. At some of the highly 
loaded moments the system did slow to less than real-time, but never for more than a few 
time-slices. 

7.3.4    Results and Discussion 

CLARET was trained to recognise eight different intentions associated with circuit 
flight. The number of training examples was limited to five. Three different pilots were 
used to train CLARET and the same three flew the aircraft under the control of the 
Instructor-Agent. The pilot who performed the training was not always the pilot who flew 
the circuit. Every possible permutation of trainer and pilot was attempted. 

CLARET successfully identified the eight flight conditions without error during ev- 
ery instance of accurate circuit flying. CLARET passed this information concerning the 
recognition process to the Instructor-agent. The agent used this information to assist in 
the modelling of the pilot's mental state. The agent successfully guided all of the pilots 
around the circuit by providing real time advice about actions to take. Because the pilot 
needs some warning about when and how to perform a manoeuvre it was essential that 
the instructor-agent provide the advice in a timely fashion. In every case CLARET was 
able to recognise the manoeuvres and the agent was able to process the data well before 
the information was actually required. If the circuit was flown poorly then CLARET was 
unable to match to the trained examples. The errors necessary to cause CLARET to 
misidentify flight conditions were such that a conscious effort needed to be made to fly 
poorly. During normal flight even by inexperienced users the systems functioned without 
error. 

7.3.4.1    Performance of CLARET 

The success of CLARET, whilst important to the success of the demonstration, was 
secondary to the more general aim of testing the demonstrating the methodology computa- 
tional feasibility of connecting a model of perception and a model of rule/knowledge-based 
behaviour within the constraints of a real time system. 

The intentions that CLARET was trained to recognise were sufficiently different that 
the task of discriminating the phases of flight was not difficult when compared with other 
applications to which CLARET has been put [138]. The real success of the experiment 
was in demonstrating the potential of pattern matching systems such as CLARET to 
model perception in a manner that allows direct recognition of intention. In so far as the 
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objectives of this thesis were concerned the implementation of the Ecological Recogniser 
pattern succeeded in proving the feasibility of modelling intention recognition in a rich 
real-time intelligent agent environment using an explicit model of perception implemented 
with a pattern matching system that connects to a higher-level more abstract model of 
reasoning. Further details about these experiments are available [72, 71]. 

7.3.4.2 Discovery of Center of Visual Flow 

The development of Gibson's theory of ecological visual perception were influenced by 
his experience in training pilot to land during the second world war. After some time 
he noticed that a the center of visual flow was an important feature part of learning to 
land an aircraft. As someone moves in the environment those things on the periphery of 
vision (assuming that they look in the direction that they are travelling) appear to move 
faster than those things that we are heading directly towards. When landing an aircraft 
the approach is proceeding correctly if the point on the runway where the touch-down is 
to occur is centered and stationary in the field of view. By explaining this phenomena to 
pilots they can more quickly be taught to land. 

A pilot's perception tends to focus then an the end of the runway and if there is relative 
movement of the point then adjustments are necessary. When CLARET was presented 
with many parameters to discriminate the pilot intentions the ones that it preferred where 
those that were related to the relative angle between the aircraft and the end of the 
runway. It seems that CLARET was able to best discriminate pilot manoeuvres when 
the variable it was presented with related to some representation of the pilot's perception. 
This phenomenon requires further investigation to ascertain its validity. It might be that 
it was due only to the particular dynamics of the VAS. 

7.3.4.3 Assisted Ecological Recogniser 

Preliminary experiments were performed with an implementation of the Assisted Eco- 
logical Recogniser. This system utilised a connection between CLARET and the mouse 
and keyboard as a representation of the pilot's actions. These preliminary experiments 
reveal that it is more difficult to recognise intention based on examination of the aircraft 
control actions. Intuitively it would seem like a more difficult proposition to recognise 
intention based on the aircraft controls because it is ultimately the pilot's intention to 
determine the aircraft trajectory and not to execute some movement of the controls. 
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Chapter 8 

Conclusions 

"/ may not have gone where I intended to go, but I think I have ended up where I 
intended to be."—Douglas Adams 

The conclusions of this thesis are presented in four sections. The first, Section 8.1, sum- 
marises the primary contributions of the thesis as they were presented in Chapters 5, 6 
and 7 and the secondary contributions as they were presented in Chapters 3 and 4. Sec- 
tion 8.2 reexamines the influences and motivations that initiated this research, considering 
the impact of the research findings on agent design in general and military simulation in 
particular. Section 8.3 examines limitations and of the research and areas that might be 
addressed in the future. 

8.1    Summary 

In addressing the stated aim of this research "to provide the designer of agent systems 
with a practical approach to modelling intention recognition for a range of intelligent agent 
systems" this thesis developed a view of intention recognition geared toward architectural 
design patterns and influenced heavily by the state of the practice of agent applications 
and the ecological psychology literature. 

The consensus of the literature is that perception is a fundamental property of agency. 
Furthermore mainstream psychological theories of perception have a structural similarity 
with existing agent-system implementations of intention recognition prompting a fresh 
look at perception. 

Agents, particularly intelligent agents, are assumed to be software entities that should 
manipulate more abstract concepts than those that characterise other types of software 
resulting in an inevitable requirement to 'bridge the abstraction gap' that results between 
agents and other components in the system. Perception was introduced as the means by 
which this abstraction gap is bridged. The situated nature of agents inspired a look at 
perception that focussed on two seemingly diverse but actually closely related areas: the 
theory of ecological psychology; and state-of-the-practice of adding agents to environments. 
Together these two seemingly unrelated topics provided insights into the design of intention 
recognition for agent systems. 
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A consequence of the model of perception adopted is an explicit focus on the concepts 
of importance to the agent. This is suggestive of the general field of agent ontologies, a 
view reinforced when reflecting on the close links that exists between communication and 
intention recognition, and communication and ontologies. Perception, from an ontology 
design perspective, becomes the means by which the system ontology is converted into the 
form required by the agent ontology. 

A model of intention recognition was presented that described intentional behaviour 
and its corresponding recognition at three levels: the intentional level; the activity level; 
and the state level. This three tiered description is consistent with other related approaches 
to decomposing behaviour. When this model of intention recognition is combined with the 
lessons derived from modelling perception a set of six architectures for modelling intention 
recognition were derived. 

These architectures were presented in the form of the mainstream patterns literature 
and the properties, features, advantages, and liabilities of each are described. These 
patterns were used as the basis for designing variations of a flight simulator, the Virtual 
Air Show. These variants provide examples of the implemented patterns and demonstrate 
the attributes by which the patterns are judged. 

Recalling the introduction to this thesis, there are two primary contributions of this 
thesis that correspond to the two constituent parts of the stated aim: 

• a set of six design patterns to support the designer of intelligent agent systems that 
require an intention recognition capability. These patterns are presented in the style 
of the mainstream software engineering literature [18] but are appropriately inspired 
by a consideration of the psychology literature; and 

• a description of an implemented system that illustrates the application and utility 
of these design patterns and provides the basis for a critical appraisal. 

Two secondary contributions were a by-product of the particular methodology adopted. 
In seeking inspiration for the design patterns the agents literature, software engineering 
literature and the psychology literature were examined. This gave rise to the two secondary 
contributions of this research introduced first in Section 1.2: 

• an account of the importance of perception in modelling agent systems. In particular, 
the importance of an explicit model of perception as the means by which structures 
or concepts in the agent's environment are converted into representations that are 
appropriate for the agent; and 

• a description of the manner in which ontologies assist intelligent agent system design 
and the relationship between perception and ontologies. Influenced by the developed 
model of perception an account of ontologies is presented that describes a means 
of integrating agent ontology design into mainstream software engineering. The 
ontology is seen as a product of the design or, if it is preexisting then a constraint 
over the design. 

These are summarised in the following sections. 
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8.1.1    Patterns for Intention Recognition 

Chapter 6 documents six agent system architectural patterns using the template de- 
scription suggested by Buschmann et. al. [18]. These patterns are based on an architecture 
derived from a consideration of the importance of agent perception combined with a three 
tiered model of intentional behaviour (See Figure 8.1). Pattern languages offer a vocab- 
ulary for design that allows the software engineer to express and document options in a 
succinct manner. Taken as a single set these six alternatives form the beginnings of a 
pattern language for talking about designing models of intention recognition. The pat- 
terns offer the agent system designer alternatives for modelling intention recognition and 
provide the information necessary to make informed design decisions about the relative 
appropriateness of the various options The description of the patterns indicate the advan- 
tages and disadvantages of each and allow the adoption of a design that is appropriate to 
the software requirements. 

8.1.2    Appraisal of the Patterns 

There are two elements to the meeting the second part of the aim of this thesis "demon- 
strate that when undertaking the design of intelligent agent systems this modelling ap- 
proach offers software engineering advantages". One is to document the specific advantages 
that the individual patterns offer relative to each other. The strengths and weaknesses of 
each pattern was evaluated in Chapter 6 and then again with the aid of a worked example 
in Chapter 7. Greater experience with the wider application of these patterns is desirable. 
This experience aside the patterns as they are expressed are useful, in that they do offer 
genuine alternative across a range of requirements. A summary of the patterns indicating 
their strengths and weaknesses is shown in Figure 8.2 a more detailed table is contained 
in text at Figure 6.8. 

The second, and more difficult, task is to demonstrate that these patterns represent 
a useful and worthwhile approach to modelling intention recognition in intelligent agent 
systems. This is achieved through the design of six variants of the same system—the 
Virtual Air Show. The discussion of the application of the designs provide a clear indication 
of the relative properties of the patterns from several viewpoints. The Ecological Recogniser 
pattern variant of this system was taken to implementation to explore the properties of 
an implemented system. This variant was chosen because it was scientifically the most 
interesting and at the same time most challenging from an engineering perspective. A 
screen shot from this system is shown in Figure 8.3. 

8.1.3    An Explicit Model of Perception 

Perception is commonly mentioned in definitions of agency and there is an emerging 
consensus in the agents community that it is a fundamental and defining concept. Another 
concept that is commonly used to define agents is 'situated'. These two concepts together 
with the realisation that there was a structural similarity between the 'sense-and-infer' 
theories of perception and existing implementations of intention recognition prompted a 
closer look at perception and led ultimately to the ecological psychology literature. 
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Figure 8.1: The agent architectural design patterns presented are variations on a theme 
developed by considering a model of perception inspired by situated agency overlaid on a 
three level description of intentional action. The result is a set of architectural possibilities 
that give rise to the six patterns presented in Chapter 6 provide a variety of characteristics 
that can be matched to the functional and performance requirements of a system. 
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Figure 8.2: Summary of the characteristics of the six intention recognition patterns. 
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Figure 8.3: The Virtual Air Show was developed as a demonstrator of some of these 
ideas. This provides an example of the design impact of the various choices and the types 
of systems for which they are appropriate. The single implemented example shown here 
is an implementation of the ecological recogniser pattern. The implemented system user 
a pattern matching system—CLARET—to provide the model of perception that feeds a 
high-level agent with direct representations of intent. 
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Perception was described as a process within the agent that transforms data from the 
environment into the form required by the agent. Characterising it in this fashion sug- 
gests that it is a software interface. In standard software development, interfaces between 
system components must often convert data but intelligent agents typically operate at the 
'knowledge level' and manipulate higher order concepts than those found in other varieties 
of software. Thus the interface between agent and environment must, in addition to other 
data transformations, abstract the data or otherwise transform it into knowledge level rep- 
resentations suitable for agent reasoning. Perception is a perfectly appropriate metaphor 
for this process in intelligent agent systems. Not only does it accurately reflect the na- 
ture of the interface but it carries the anthropomorphism often sought when describing 
intelligent agent concepts. 

In the practical experiences of situating agents in environments came a second source 
of insight. Examples of labelled environments and labelled agents were presented that 
demonstrated how aspects of perception can be facilitated. 

Together these two views of situated perception and agency, one highly theoretical 
and one highly practical combine to provide possible options for the implementation of 
perceptual behaviours in agent systems. 

8.1.4    Ontologies and System Design 

With an explicit model of perception providing the translation of data into the form 
required by the agent it is relatively straightforward to see perception as an ontology 
translator. Every software system, indeed every system, can be characterised, post-hoc, by 
an ontology. In some systems the ontology is more obvious than in others. In some it might 
be more clearly expressed in the design than it is in the executable system and in some it is 
barely visible at all. How seriously ontologies are teated during design depends ultimately 
on the importance of structuring and representing knowledge to the functioning of the 
system. Software that makes use of abstraction as a means of dealing with complexity 
is more likely to benefit from a careful consideration of knowledge structuring and hence 
require ontologies. If an ontology is pre-specified and mandated then it ought to be 
considered as a constraint over the agent-system design. If it is not pre-specified then it 
ought to be considered a product of the system design. 

Two ontologies are useful for characterising agent systems. One that has the scope 
of the domain and expresses the global concepts that are useful across and between com- 
ponents and an agent ontology that has scope of the agent and expresses the concepts 
local to the agent. Perception mediates between the agent and the rest of the system by 
translating between these ontologies. 

Ontologies can structure knowledge of intentions enabling the modelling of intentional 
action and the modelling of intention recognition. That these two processes are differ- 
ent advocates local ontologies and, if local ontologies are preferred, then a translation 
mechanism is required—perception fills that role. 
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8.2    Revisiting the Thesis Influences 

As discussed in Sections 1.4 and 1.3 there are a number of motivating factors that have 
influenced this research. These are briefly recounted here. 

8.2.1    Agent System Design 

Several insights for the design of agent systems are contributed by this thesis. The 
following short summaries are examples of small contributions made by this thesis to the 
broad discipline of agent design. In most cases it is difficult, to draw strong conclusions, 
but they are presented here as single data points in the broader study of agent design that 
might be examined in more detail as a part of future research or combined with other 
similar experiences to draw more general conclusions. 

8.2.1.1 A research focus on real world problems 

Much agent research is not focussed directly on real-world problems but becomes 
trapped in toy-worlds where it is difficult to learn lessons that translate into industrial 
and commercial settings. The types of military systems that initiated this research typi- 
cally require between 10 and 20 person-years of development effort. This is clearly beyond 
the scope of postgraduate study which creates problems for evaluating research into sys- 
tem design. This thesis focussed on technology-independent design that removed the need 
for the time consuming overhead of large scale systems implementation. It is not clear 
that this would have been possible had there not been considerable prior experience with 
the development of very large agent systems [76]. 

8.2.1.2 Intentional analysis as a means of specifying agent behaviours 

Intentional analysis is a necessity of a software system that must exhibit intention 
recognition. Elsewhere it has been suggested as a useful approach for analysing require- 
ments in a range of information systems [59]. In Section 5.2.4 the idea of intentional 
analysis was introduced and then taken further with some practical examples of a possible 
application in Section 7.3.1. Further research is necessary to explore the idea of intentional 
analysis and to extend it into a mainstream requirements engineering tool. 

8.2.1.3 An approach to documenting architectures of agent solutions 

One of the clear impediments to the proliferation of agent technologies is a collection 
of well documented examples of successfully deployed agent applications. The experience 
of the object oriented community with design patterns has clearly indicated the benefits 
of design level reuse. So whether the issue is direct design reuse, or simply understanding 
the solutions that others have found useful, design patterns offer a standard template for 
expressing an agent system design that is useful and familiar to software engineers. This 
thesis presented design patterns as a useful way of documenting an agent system. 

196 



DSTO-RR-0286 

8.2.1.4 Designing agents as post hoc additions to legacy systems 

For anything but toy systems agents are seldom developed in isolation. They will of 
necessity exist within and along side other forms of software. The systems that agents 
inhabit are usually, though not always, large legacy systems that must be retrofitted to suit 
the agent or must be dealt with, unmodified, by the agent. By expressing design patterns 
that offer implementation alternatives and by introducing an approach to ontology design 
that considers trade-offs between the environment and the agent this thesis explicitly caters 
for the design of agents in environment and offers techniques for designing environments 
for agents. 

8.2.1.5 A step toward mainstreaming agent technologies 

If agents are to enter the mainstream they will be supported by the collective expe- 
riences, methodologies, and practices that make up software engineering. This thesis has 
focussed not on agent technologies, tools, or languages, which are well represented in the 
literature but has chosen to focus on the other aspects of software engineering that are 
less well represented: design, architectures, and patterns. 

8.2.1.6 Demystifying of the "black-art" of ontology design 

By developing a model of the agent ontology as distinct from the domain ontology and 
then declaring perception to be the mechanism responsible for translating from the latter 
to the former it is relatively simple to derive an approach to software engineering that 
sees a consideration or design of the ontologies as something integrated within standard 
software engineering. 

8.2.1.7 Toward a unified definition of agency 

Definitions of agency vary and agreed definitions although unimportant for science are 
important in developing software engineering standards, methodologies and for pedagogy. 
In this thesis a definition of agency was provided that is consistent with much of the 
literature. This definition is high level and general but the detail is important to the 
elaboration of the models presented. In particular a definition of perception was presented 
that informs more general views of agent design. 

8.2.1.8 Agents are knowledge level entities that often inhabit less ab- 
stract environments 

The need to situate agents in environments prompted the focus on perception as the 
means by which the data in the environment is converted into the form required by the 
agent. In particular the idea of maintaining 'ontological purity' reflects a desire by some 
agent designers to avoid the use of low-level data inside the agent and demonstrates a 
belief that agents should be described at a different level of abstraction to other types 
of software. A desire to maintain the high level knowledge level reasoning aspects of the 
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agent as ontologically pure as possible thus maintaining the level-of-abstraction advantage 
agents have whilst recognising the need to interface with other types of software. 

8.2.1.9    Solutions to designing intelligence will require hybrid technolo- 
gies 

The architectures developed specifically support modularisations that allow for hy- 
brid technologies to be used for implementing intention recognition. The Hybrid Pat- 
tern(Section 6.2.1) and the two ecologically inspired patterns (Section 6.2.4 and 6.2.5) 
support hybrid technologies. The example implemented system in Section 7.2.4 provides 
an example and a discussion of a hybrid system. Some researchers consider it as fun- 
damental to the future of artificial intelligence that architectures that combine disparate 
technologies are available. The approach presented in this thesis certainly does not pre- 
clude hybrid systems and some of the patterns implicitly encourage it. 

8.2.2    Military Simulation 

Until the recent flourishing of console-based games and the emergence of computer 
graphics in animation and special effects in movies, military simulation was the primary 
driver of many aspects of simulation technology. Applications for intention recognition 
are widespread but military simulation remains an important consumer of any technology 
developed in this field. Military simulation fostered this research with a stated requirement 
to develop the capacity to simulate intention recognition within the range of simulation 
applications. These include real-time human-in-the-loop simulators and faster than real- 
time constructive simulators used for operations research. Requirements often conflict and 
fidelity, plausibility, and cognitive realism must often be traded off against performance, 
simplicity, maintainability and explainability Intention recognition is an identified need of 
the military simulation community but there is such variation in the specific requirements 
that a range of solutions will always be necessary. 

A modelling framework and a set of architectures that offer alternative implementa- 
tions of intention recognition. This allows the developers of a particular simulation to 
consider their particular requirements against the range of options presented and select an 
appropriate architecture. Simply developing a single technology, language, or architecture 
presupposes a set of requirements that will inevitably fail to cover the spectrum necessary 
for meeting the needs of the military simulation community. 

Military simulation systems must be well engineered—they must be quality systems. 
This requires that they are well specified and well designed. Furthermore, non-functional 
requirements can dominate and performance, particularly in real-time simulation is often 
paramount. Inevitably there are compromises that must be made between what might be 
termed fidelity63 and performance. Managing these trade-offs must be done explicitly, in 
order that they are documented and well understood. This thesis has presented a design 
approach that offers design models that allow these decisions to be made in a reasoned 
fashion. 

Fidelity here is a catchall term for credibility of model, psychological plausibility, verifiability, and the 
properties of the model that govern the manner in which it represents intention recognition. 
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From the implementation of the virtual air show described in Section 7.2.4 there are 
insights into a particular technology, the CLARET pattern matching system, and its ap- 
plication to the recognition of spatio-temporal trajectories. The particular requirements of 
military simulation often require processing of spatio-temporal data streams that indicate 
the trajectories of the simulated entities. Architectures and technologies for addressing 
these particular problems have been presented and discussed. 

An approach to developing intention recognition that allows it to be integrated with 
other software engineering activities as just another required system functionality. The 
approach presented allows for ontology design, perception modelling, and intention recog- 
nition to be integrated into the agent system design process. A software engineering 
methodology has not been developed but the models presented in this thesis should not 
overly constrain any preference. Military systems typically require mode rigorous engi- 
neering than other systems and providing solutions that are compatible with requirements 
driven software engineering is critical to military simulation. Intention recognition is not 
seen as something special, just another behaviour that must be provided. 

This thesis has strongly demonstrated the capacity of components of a system other 
than the agent to be modified to support the design requirements of the agent. The 
military simulation community has a large investment in existing simulation environments. 
Architectures that inform the design process that modify these environments to make them 
agent friendly are critical to extending the life of these simulators in the face of a need to 
incorporate agents in the form of computer generate forces. 

Benefits from the direct application of this research are limited to those systems that 
conform to the assumptions of Section 5 and, more importantly, require intention recog- 
nition. Usefulness is dictated by whether or not the patterns characterise the intention 
recognition problem in a manner that allows the architectures to be reused over many 
application domains. Only experience with the patterns in several serious applications 
will test that result. Wider implications of this research are linked more to the approach 
adopted and the style of research conducted than to the specific results. The development 
of the particular military simulators that initiated this research is ongoing [76]. The need 
for an intention recognition capability in these simulations is increasingly urgent and there 
are already plans to implement systems based on the outcomes of this research. Specif- 
ically there are some important results of this for the designers of military simulation. 
These lessons apply to intention recognition and also to broader design issues. 

8.3    Limits and Extensions of this Research 

The thesis was introduced with the aim to "provide the designer of agent systems with 
a practical approach to modelling intention recognition for a range of intelligent agent 
systems". 

This aim was successfully achieved—six agent design patterns have been presented 
that offer the agent system developer with many choices for modelling recognition but 
there are several areas that might be strengthened to advance this research further. 
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8.3.1    Experience with the Patterns 

In order to be classified as patterns it is normal for an architectural design to have 
been used and reused several times. Although the architectures that have been developed 
throughout this thesis where presented in the style of the patterns literature greater expe- 
rience with their application is necessary to strengthen the claim that they actually offer 
substantial benefits to the designer of agent systems. Some quantifiable evidence that de- 
sign patterns actually reduce the development time for agent systems would strengthen the 
claims of software engineering advantage. There is strong evidence in the object oriented 
software development community that there are measurable advantages to be derived from 
adopting patterns. Obtaining this type of data in the world of agent oriented software 
development requires the existence of many large systems with well documented archi- 
tectures. This thesis might be seen as a small part of the bootstrapping effort necessary 
to break a Catch-22: until software engineering practices for designing agent systems are 
available building large agent systems is difficult and until experiences with the design of 
large agent systems are published it is difficult to develop suitable design approaches. 

8.3.2    Multi-Agent Intention Recognition 

In multi-agent environments confusion as to the identity of the intending agent sub- 
stantially complicates the intention recognition. Though outside the scope of this thesis 
many applications, notably military simulation, will require extensions to this research to 
cater for intention recognition in a socially complex setting. The general approach of this 
thesis could be extended to model multi-agent intention recognition. The extension would 
need to include a recognition of team structures and joint intentions and the ability to 
reconcile ambiguity in identity as well as activity. The modelling approach likely to be 
taken would see the introduction of a fourth level in the model of intentional behaviour. 
This social layer would indicate the structured social relationships existing between agents 
and that causally give rise to intentional behaviour. Reconciling identity could then be 
undertaken at the highest level as a prelude to recognising intention. This is a simplifica- 
tion of the approach suggested by Tidhar and Sonenberg [162]. A more complex solution 
would treat identity as orthogonal to intentional behaviour and adopt something of the 
same process as that indicated for intention recognition but acting on the social structures. 
A still more complex solution would treat social structures and intentional behaviour as 
mutually dependent and mutually causal. This creates an n by m hypothesis space in 
unknown social structure and unknown intention. It is likely that the combination of the 
work on organisation oriented programming by Tidhar [172] together with the related work 
on intention recognition would provide the most suitable starting point for developing the 
models upon which a set of architectural design patterns would be based. 

8.3.3    Software Life-Cycle Support 

This aim of this thesis was to "support the designer" and so stayed mute on the 
various other issues related to the software development life-cycle. Although examples of 
implementation technologies were given, and analysis was briefly touched upon, languages, 
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testing, validation, requirements specification, and the integration of intention recognition 
with other agent functional behaviours has been ignored. Extensions to this thesis might 
focus on particular implementation techniques, testing, or on other important facets of 
software engineering. 

8.3.4    Agent Patterns 

Of most interest to the agent oriented software engineering community is the extension 
of agent patterns into other areas of agent design. Patterns for multi-agent collaboration, 
internal agent architectures and extracting patterns from successfully deployed agent sys- 
tems as they emerge are just three of the areas that deserve exploration. In the early days 
of any technology failures often outnumber successes and documenting those is valuable 
and insightful. Agent anti-patterns would examine implementations that have been shown 
to be unsuccessful [14]. Concentrating on the detail of intention recognition would allow 
for greater insights to be gained into the application and implementation of these patterns 
in industrial settings. It is to be expected that the results of this thesis will be applied al- 
most immediately in ongoing research and development into military simulation. Beyond 
adding detail to the presented patterns, or extending the scope of agent patterns further 
there are several research areas suggested by this thesis. 

8.3.5    The General Applicability of Intentional Analysis 

Intention oriented analysis, briefly mentioned in Chapter 5 offers a new approach to 
analysing complex software systems. It allows the developer of a system to analyse a 
system by making use of the folk-psychology that supports their everyday activities and as 
such is a powerful and familiar tool. An intentional analysis is a prerequisite for a designing 
a system that exhibits intention recognition. Whatever constitutes an intentional analysis 
it is clear that it must result in some description of the system in terms of the intentions of 
the agents that populate it. There is some evidence that an intentional analysis has wider 
applicability than the self-evident case of supporting intention recognition. The argument 
posed here is based on Dennett's intentional stance. 

Dennett offers three stances that can be adopted to predict the behaviour of complex 
systems: the physical stance; design stance; and the intentional stance [39]. Each stance 
provides explanatory and predictive power and is progressively more abstract than the 
last. 

Some software systems, perhaps even some agent systems are capable of being under- 
stood from physical stance64. Slightly more sophisticated agent systems might be simple 
enough to be to be understood from the design stance. An understanding of the agent 
design is enough to reliably predict, and hence understand, the agent behaviour. 

64This will be interpreted as meaning that the system can be understood by inspection of the source 
code. Perhaps Dennett might prefer machine code, or even the physical operation of the hardware as the 
machine code executes, but source code suffices to make the analogy. 
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More complex systems are not understandable from the design stance. An under- 
standing of the design of the agent is inadequate for predicting its behaviour65. Complex 
agent systems, particularly those that inhabit dynamic environments that expose them 
to continually changing, unforeseeable, combinations of input react according to their in- 
ternal design, a design that is often either necessarily complex (in the case of symbolic 
reasoning systems) or hopelessly incomprehensible in the case of neural or subsumption 
architectures. But put these systems into the environment and their behaviours appear 
sensible, practical, intelligent, and above all understandable. 

Dennett would claim that in this case the explanations of agent behaviour come from 
one of two sources: either a deep and thorough understanding of the software design and 
the state of the system, or a resort to the intentional stance—a folk-psychological view of 
agents that is extremely reliable in its predictive capacity. 

Some agent systems are simple and can be understood from the design stance. For 
the more complex ones, and those with high-level behaviours like intention recognition are 
obvious candidates, the intentional stance provides a more abstract view of the system 
that is at once easy to use due to its familiarity, and yet still useful in its reliability and 
software engineering utility. 

This is not to discount software design. Clearly all software must be designed and 
its behaviour clearly and unambiguously specified. Intentional descriptions of system 
behaviour can be useful through the software life-cycle and can certainly provide input 
into the design process but they are clearly not a substitute for design66. This then is the 
basis of the case for the universal applicability of intentional analysis to complex agent 
systems. 

8.3.6    The AI Debate about Perception and Cognition 

Drawing the line between perception and cognition has led to some of the more heated 
debates in AI [26]. In a different though superficially related way much of the connec- 
tionist/symbolicist debate has moved from claims by either side to outright dominance to 
broad agreement that both approaches have merit. There are clearly some tasks to which 
symbol systems are better suited and some to which network based approaches have the 
upper hand. Deciding where to prefer one style of solution over another impacts upon 
many aspects of AI including where the line between perception and cognition is drawn. 

The impact of the ecological psychologists on this debate has been minor and the 
debate is about where to draw the demarcation line inside the agent. There are relatively 

5The rather frightening proposition is that in complex software systems the system design is an in- 
appropriate means of understanding the behaviour of the software. Neural networks are an interesting 
example of this phenomenon. Predicting the behaviour of a neural network when exposed to a input 
might be possible from knowledge of its internal design and its state but it is simpler to talk in terms of 
the net being 'trained' and being capable of 'recognising'. These concepts are abstract and though they 
characterise the function of the neural network they are not an intrinsic part of the design. Even in simpler 
agents the dynamism and richness of the environment can lead to complex unpredictable behaviours from 
simple agent designs. 

The one possible exception to this would be agent systems that are designed and programmed using 
explicit representations of intention. Though no such languages exist the logical framework has been 
developed [148]. 
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few proposals from AI researchers to include the aspects of the system outside the agent 
to support perception (or possibly even cognition). 

This thesis has presented a set of architectures that ignores conventional ideas about 
what is cognitive and what is perceptual and distributes functionality on the basis of 
software engineering pragmatics. Even so each of the patterns is justifiable in a cognitive 
modelling sense and as a whole they serve to map the landscape of possibilities and may 
give rise to approaches that have been previously undervalued or ignored. 

Care must be taken in drawing the line between perception and cognition. The six 
patterns developed each model the division between perception and cognition (agent rea- 
soning) in different ways. Rather than take sides in one of AI's ongoing debates this thesis 
provides support for modelling the perception cognition demarcation in many ways. 

Perception and sub-symbolic aspects of cognition are often ignored by AI researchers. 
By providing an explicit model of perception as a part of the characteristic model of agency 
this thesis forces a consideration of agent perception. The encapsulation supported by the 
model of perception allows agent developers to ignore the perception related aspects of the 
agent whilst they develop the agent reasoning if they so choose. The perception module 
must eventually be designed but the compartmentalisation is a useful one. 

8.3.7    Use Cases for Documenting Intentions 

Use cases are a technique from Object Oriented Software Engineering (OOSE) [82] 
that has been adopted by the mainstream object oriented community and is supported 
by the UML and many case tools. Use cases were introduced to enable the specification 
of requirements in systems where the interactions between the user and the system are 
complex. 

That a use case analysis commences by considering scenarios sets the it apart from 
other 00 techniques. Scenarios allow the future user of the system to visualise the ex- 
pected interactions and to describe the system in terms of the activities that it must 
support and the functionality that it must provide. Typically a scenario of the system 
in use is analysed and system functionality is specified and structured by the use cases. 
Heinze and Papasimeon have shown that a Use Case analysis can be successfully adapted 
for specifying behavioural requirements in agent systems [73]. Use cases equally be used 
to document and structure, admittedly in an informal way, the intentional behaviour of 
agents. Activity and interaction diagrams can indicate temporal aspects of the intention. 
In the example of Chapter 7 use cases documented the intentions of the actors involved. 
Use cases can show interactions between agents, human users, and other components of 
the system. Further research might examine the capacity for use cases to form the basis 
of a language for modelling intentions so that intention recognition can be analysed and 
designed. 
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8.3.8    Recognition versus Anticipation 

There is a class of intention recognition that does not explicitly require an opponent. 
For example Laird [103] has constructed a Quakebof7 that builds a mental model of an 
opponent in order to anticipate them. An interesting feature of this approach is that 
there is no requirement for any observation of the opponent to exist for its actions to be 
predicted. It is assumed that an opponent exists and that they can be anticipated via 
an empathic simulation process. This does not qualify directly as intention recognition 
per se. It is intention prediction. Even so, there are a number of modelling options 
that might support this application that fit within the design patterns presented. Rather 
than focussing on the intending agent a recognising agent could perceive the opportunities 
offered by the environment for intentional behaviour. This information would support 
hypotheses allowing the anticipation of intent. 

Epilogue 

When building software capable of human-like behaviours, there is a temptation to be 
drawn back into good old-fashioned AI (GOFAI) and the quest for computational repre- 
sentations of our brain that are all-powerful, elegant, and in some sense representative of 
the true state of our physiology. But if practical software development is the aim, and the 
software is resource bounded (as it always is) then there are inevitable trade-offs between 
the ambition of GOFAI and software engineering pragmatism. Whilst cognitive scientists 
search for ever better representations, the engineer has to build systems today, and these 
systems (perhaps inspired by cognitive science) must ultimately meet the requirements 
that rightly drive their development. The short-circuits, tricks, and unnatural designs 
are justified precisely because they do not match any reality. Besides, as Dan Dennett 
says— "the brain cheats!"—and if the brain cheats, why shouldn't the software engineer? 
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